Electrochemical impedance spectroscopy (EIS) and localized surface plasmon resonance (LSPR) were performed on the same Au nanoparticle (AuNP)-modified indium tin oxide (ITO) coated glass surfaces. Cyclic voltammetry was applied to electrodeposit AuNPs on ITO surface directly. The surface plasmon band characterization of AuNPs was initially studied by controlling the electrodeposition conditions. It was found that the size of AuNP clusters was significantly affected by the applied potential and KCl concentration in solution. The dual-detection platform was applied to detect DNA hybridization related to a specific point mutation in apolipoprotein E gene (ApoE), which was related to the progression of Alzheimer's disease. The preliminary results facilitate the development of a versatile biosensor that can be easily miniaturized and integrated into a high-throughput diagnostic device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2013.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!