Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2013.07.054DOI Listing

Publication Analysis

Top Keywords

novel mutation
4
mutation ifn-γ
4
ifn-γ receptor
4
receptor presenting
4
presenting multisystem
4
multisystem mycobacterium
4
mycobacterium intracellulare
4
intracellulare infection
4
novel
1
ifn-γ
1

Similar Publications

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) remains the most lethal gynecological malignancy, and there is still an unmet medical need to deepen basic research on its origins and mechanisms of progression. Patient-derived organoids of high-grade serous ovarian cancer (HGSOC-PDO) are a powerful model to study the complexity of ovarian cancer as they maintain, in vitro, the mutational profile and cellular architecture of the cancer tissue. Genetic modifications by lentiviral transduction allow novel insights into signaling pathways and the potential identification of biomarkers regarding the evolution of drug resistance.

View Article and Find Full Text PDF

Valine Restriction Extends Survival in a Drosophila Model of Short-Chain Enoyl-CoA Hydratase 1 (ECHS1) Deficiency.

J Inherit Metab Dis

January 2025

Department of Biochemistry and Chemistry and La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia.

Short-chain enoyl-CoA hydratase 1 deficiency (ECHS1D) is a rare genetic disorder caused by biallelic pathogenic variants in the ECHS1 gene. ECHS1D is characterised by severe neurological and physical impairment that often leads to childhood mortality. Therapies such as protein and single nutrient-restricted diets show poor efficacy, whereas the development of new treatments is hindered by the low prevalence of the disorder and a lack of model systems for treatment testing.

View Article and Find Full Text PDF

Biocontrol techniques that impair reproductive capacity of insect pests provide opportunities to control the dynamics of their populations while minimizing collateral damage to non-target species and the environment. The Trojan Female Technique, or TFT, is a method of the trans-generational fertility-based population control through the release of females that carry mitochondrial DNA mutations that negatively affect male, but not female, reproductive output. TFT is based on the evolutionary hypothesis that, due to maternal inheritance of mitochondria, mutations which are beneficial or neutral in females but harmful in males can accumulate in the mitochondrial genome without selection acting against them.

View Article and Find Full Text PDF

Introduction: Meningiomas are the most common primary central nervous system (CNS) tumor in adults, comprising one-third of all primary adult CNS tumors. Although several recent publications have identified molecular alterations in meningioma including characteristic mutations, copy number alterations, and gene expression signatures, our understanding of the drivers of meningioma recurrence is limited.

Objective: To identify gene expression signatures of 1p22qNF2 meningioma recurrence, with concurrent biallelic inactivation of and loss of chr1p that are heterogenous but enriched for recurrent meningiomas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!