In a recent study, we attempted to confer a tumor-selective cytotoxic activity to methyl-β-cyclodextrin (M-β-CyD), we synthesized folate-conjugated M-β-CyD (FA-M-β-CyD), and demonstrated the potential of FA-M-β-CyD as a novel anticancer agent at a high dose. In the present study, to expand the application of FA-M-β-CyD for cancer chemotherapy, we evaluated the potential of FA-M-β-CyD as a tumor-targeting anticancer drug carrier at a low dose. FA-M-β-CyD formed an inclusion complex with doxorubicin (DOX) with a high-stability constant (3.0 × 10M). Antitumor activity of DOX was increased by the complexation with FA-M-β-CyD, but not with folate-conjugated β-CyD (FA-β-CyD) or M-β-CyD in KB cells, a folate receptor-α (FR-α)-expressing cell line. Also, FA-M-β-CyD increased antitumor activity of paclitaxel, a class IV compound in the biopharmaceutical classification system (BCS), but not 5-fluorouracil, a class III compound in the BCS. Furthermore, FA-M-β-CyD enhanced cellular uptake of DOX through a complexation in KB cells (FR-α (+)), compared to FA-β-CyD and M-β-CyD. The DOX/FA-M-β-CyD complex showed markedly high antitumor activity, compared to DOX alone and DOX/M-β-CyD complex, after an intravenous administration to FR-α-expressing tumor cell-bearing mice. These findings suggest that FA-M-β-CyD could be useful as a tumor-selective carrier for anticancer drugs.

Download full-text PDF

Source
http://dx.doi.org/10.3109/1061186X.2013.856012DOI Listing

Publication Analysis

Top Keywords

antitumor activity
12
fa-m-β-cyd
9
complex doxorubicin
8
cancer chemotherapy
8
potential fa-m-β-cyd
8
fa-β-cyd m-β-cyd
8
potential complex
4
doxorubicin folate-conjugated
4
folate-conjugated methyl-β-cyclodextrin
4
methyl-β-cyclodextrin tumor-selective
4

Similar Publications

Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).

Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.

View Article and Find Full Text PDF

Esophageal cancer (EC) is one of the most common highly malignant tumors of the digestive system, with a poor prognosis under current treatment regimens. Nucleolin (NCL) is overexpressed in many tumors, and drugs specifically targeting NCL may offer a promising strategy for treating esophageal cancer. Here, we designed and prepared a novel aptamer-conjugated drug targeting NCL by AS1411 aptamer-human serum albumin (HSA)-the apoprotein of lidamycin (LDP)-active enediyne chromophore (AE), in order to achieve targeted treatment of esophageal cancer.

View Article and Find Full Text PDF

Environment-recognizing DNA nanodevices have proven promising for cellular manipulation and disease treatment, whereas how to sequentially respond to different cellular microenvironments remains a challenge. To this end, here we elaborate a logic-gated intelligent DNA nanorobot (Gi-DR) for the cascade response to inter- and intra-cellular microenvironments, thereby achieving lysosome-targeted cargo delivery for subcellular interference and tumor treatment with enhanced efficacy. Utilizing G-quadruplexes to respond to high-level K+ in cancer cell surrounding, this Gi-DR nanorobot can activate an aptamer-based transmembrane DNA machine that delivers molecular payloads to cellular lysosome.

View Article and Find Full Text PDF

Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4.

View Article and Find Full Text PDF

Characterization of Bozitinib as a potential therapeutic agent for MET-amplified gastric cancer.

Commun Biol

January 2025

Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.

Hyperactive c-Met signaling pathway caused by altered MET is a common mechanism underlying gastric cancer and represents an attractive target for the treatment of gastric cancer with MET alterations. However, no c-Met kinase inhibitors are currently approved specifically for the treatment of c-Met-amplified gastric cancer. Recently, bozitinib, a highly selective c-Met kinase inhibitor, has shown remarkable potency in selectively inhibiting MET-altered non-small cell lung cancer and secondary glioblastoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!