Fourteen novel terpene-conjugated curcuminoids, terpecurcumins J-W (1-14), have been isolated from the rhizomes of Curcuma longa L. Among them, terpecurcumins J-Q and V represent four unprecedented skeletons featuring an unusual core of hydrobenzannulated[6,6]-spiroketal (1 and 2), bicyclo[2.2.2]octene (3-7), bicyclo[3.1.3]octene (8), and spiroepoxide (13), respectively. The structures of compounds 1-14 were elucidated by extensive spectroscopic analysis, and their absolute configurations were established by electronic circular dichroism, vibrational circular dichroism, and (13)C NMR spectroscopic data analysis, together with density functional theory calculations. The structure and configuration of 1 was further confirmed by single-crystal X-ray diffraction (Cu Kα). The biogenetic pathways of 1-14 were proposed, involving Michael addition, condensation, Diels-Alder cycloaddition, and electrophilic substitution reactions. Terpecurcumins showed more potent cytotoxic activities than curcumin and ar-/β-turmerone. Among them, terpecurcumin Q (8) exhibited IC50 of 3.9 μM against MCF-7 human breast cancer cells, and mitochondria-mediated apoptosis played an important role in the overall growth inhibition. Finally, LC/MS/MS quantitative analysis of five representative terpecurcumins indicated these novel compounds were present in C. longa at parts per million level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jo401859u | DOI Listing |
Clin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.
View Article and Find Full Text PDFSleep Breath
January 2025
Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.
Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.
Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.
J Mol Model
January 2025
Escuela Superior de Física y Matemáticas, IPN S/N, Edificio 9 de la Unidad Profesional "Adolfo López Mateos", Col. Lindavista, Alc. Gustavo A. Madero, 07738, Mexico City, Mexico.
Context: "Nanostructure of graphene-reinforced with polymethyl methacrylate" (PMMA-G), and vice versa, is investigated using its molecular structure, in the present work. The PMMA-G nanostructure was constructed by bonding PMMA with graphene nanosheet in a sense to get three different configurations. Each configuration consisted of polymeric structures with three degrees of polymerization (such as monomers, dimers, and trimers polymers, respectively).
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!