The high quality human mesenchymal stem cells (MSCs) with remarkable expansion potential in culture are demonstrated to possess multifold clinical applications. However, their isolation and characterization are difficult and sometimes ambiguous. We exploited nucleotide metabolizing ecto-enzymes for more complete characterization of MSCs. Using standard methods of cell culturing and analyses, we detected significant differences in the activity of ecto-nucleotidases on the surface of MSCs isolated from umbilical cord tissue and MSC-like cells derived from umbilical cord blood. Interestingly, the proliferation rate and the immunophenotypic characteristics of mesenchymal stem cells also correspond to the activities of these enzymes. Compared with the CD90-, CD105-, and CD73-deficient and slowly proliferating UCB-MSC-like cells that had relatively higher ecto-NTPDases activity, the CD90-, CD105-, and CD73-positive and rapidly proliferating UC-MSCs rather had ecto-5'-nucleotidase activity and presented neither ecto-nucleotidases nor adenylate kinase activities. In summary, our results demonstrate for the first time that activity of purine nucleotide metabolizing ecto-enzymes differs significantly between mesenchymal stem cells drawn from different neonatal sources, corresponding with a distinct proliferative potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/bcb-2013-0050 | DOI Listing |
J Transl Med
January 2025
Department of Joint Surgery, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China.
Rotator cuff injury (RCI), characterized by shoulder pain and restricted mobility, represents a subset of tendon-bone insertion injuries (TBI). In the majority of cases, surgical reconstruction of the affected tendons or ligaments is required to address the damage. However, numerous clinical failures have underscored the suboptimal outcomes associated with such procedures.
View Article and Find Full Text PDFJ Cyst Fibros
January 2025
The Lundquist Institute, Harbor-UCLA Medical Center, Torrance 90502 CA, USA. Electronic address:
Background: Cystic Fibrosis-related Bone Disease is an emerging challenge faced by 50 % of adult people with cystic fibrosis (CF). The multifactorial causes of this comorbidity remain elusive. However, congenital bone defects have been observed in animal models with CFTR mutations, suggesting its importance.
View Article and Find Full Text PDFExp Neurol
January 2025
Department of Neurosurgery, Faculty of Medicine, Hokkaido University, Sapporo, Japan.
Introduction: Brain damage caused by subarachnoid hemorrhage (SAH) currently lacks effective treatment, leading to stagnation in the improvement of functional outcomes for decades. Recent studies have demonstrated the therapeutic potential of exosomes released from mesenchymal stem cells (MSC), which effectively attenuate neuronal apoptosis and inflammation in neurological diseases. Due to the challenge of systemic dilution associated with intravenous administration, intranasal delivery has emerged as a novel approach for targeting the brain.
View Article and Find Full Text PDFJ Invest Dermatol
January 2025
Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, P. R. China. Electronic address:
J Stomatol Oral Maxillofac Surg
January 2025
Department of Stomatology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519090, China. Electronic address:
Objective: To investigate the reparative effect of hypoxia pretreated hAMSCs on radiation-induced damage to salivary gland function in mice.
Methods: hAMSCs were separated from human amniotic tissues by mechanical and enzymatic digestion methods and a 15 Gy electron beam was used to locally irradiate the neck of mouse to create a salivary gland injury model. The mouse models were randomly divided into four groups: control group, IR+PBS group, IR+Nor group and IR+HP group.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!