Vps1, a recycling factor for the traffic from early endosome to the late Golgi.

Biochem Cell Biol

a Department of Biology, Missouri State University, Springfield, MO 65897, USA.

Published: December 2013

Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1's function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.

Download full-text PDF

Source
http://dx.doi.org/10.1139/bcb-2013-0044DOI Listing

Publication Analysis

Top Keywords

late golgi
16
recycling factor
8
early endosomes
8
accumulation gfp-snc1
8
vps1
6
early
5
late
5
recycling
5
vps1 recycling
4
traffic
4

Similar Publications

RudLOV is an optically synchronized cargo transport method revealing unexpected effects of dynasore.

EMBO Rep

December 2024

Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.

Live imaging of secretory cargoes is a powerful method for understanding the mechanisms of membrane trafficking. Inducing the synchronous release of cargoes from an organelle is key for enhancing microscopic observation. We developed an optical cargo-releasing method, 'retention using dark state of LOV2' (RudLOV), which enables precise spatial, temporal, and quantity control during cargo release.

View Article and Find Full Text PDF

Peripheral endoplasmic reticulum (ER) tubules move along microtubules to interact with various organelles through membrane contact sites. Traditionally, ER moves by either sliding along stable microtubules via molecular motors or attaching to the plus ends of dynamic microtubules through tip attachment complexes (TAC). A recently discovered third process, hitchhiking, involves motile vesicles pulling ER tubules along microtubules.

View Article and Find Full Text PDF

Unlabelled: Human papillomaviruses (HPVs) travel from the trans-Golgi network (TGN) to the condensed (mitotic) chromosomes during mitosis. Partially uncoated HPV capsids utilize a unique vesicular structure for trafficking and nuclear import, which is directed by the minor capsid protein L2. However, it is still unknown which precise factors facilitate post-TGN HPV trafficking to the nucleus.

View Article and Find Full Text PDF

Regulation of yeast polarized exocytosis by phosphoinositide lipids.

Cell Mol Life Sci

November 2024

Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.

Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release.

View Article and Find Full Text PDF
Article Synopsis
  • - Niemann-Pick type C disease is caused mainly by mutations in the NPC1 gene, leading to cholesterol buildup and lysosomal dysfunction.
  • - The study tested polyphenol-rich extracts from *L.* (RCME) and its components, rutin and quercitrin, to see if they could improve NPC1 protein trafficking and reduce cholesterol levels in NPC patient-derived fibroblasts, finding that RCME was effective while the drug miglustat was not.
  • - RCME was shown to improve the trafficking of various NPC1 mutants and lower cholesterol levels, suggesting it may be a more effective therapeutic option than current treatments that only reduce cholesterol levels.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!