Recycling of cellular membranes and their constituents plays a role for cell survival and growth. In the budding yeast, there are recycling traffics from early and late endosomal compartments to the late Golgi. Here, we examined a possible role for Vps1, a large GTPase, in the recycling traffic of GFP-Snc1 from early endosomes to the late Golgi. In the absence of Vps1 we observed an aberrant accumulation of GFP-Snc1 puncta in the cytoplasm that we identified as early endosomes. The N-terminal GTPase and the C-terminal GED domains of Vps1 are essential for Vps1's function in Snc1 recycling. Our finding of genetic interactions of VPS1 with genes involved in early endosome-to-Golgi traffic further suggests Vps1 functions as a recycling factor in the membrane traffic. Finally, we provide evidence that the severe accumulation of GFP-Snc1 cytoplasmic puncta in vps1Δ cells is attributed to a mild defect in the retention of the GARP component Vps51 at the late Golgi, as well as a severe disruption of actin cables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/bcb-2013-0044 | DOI Listing |
EMBO Rep
December 2024
Program of Life and Environmental Science, Graduate School of Integral Science for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8521, Japan.
Live imaging of secretory cargoes is a powerful method for understanding the mechanisms of membrane trafficking. Inducing the synchronous release of cargoes from an organelle is key for enhancing microscopic observation. We developed an optical cargo-releasing method, 'retention using dark state of LOV2' (RudLOV), which enables precise spatial, temporal, and quantity control during cargo release.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Molecular Physiology and Biophysics, Larner College of Medicine at the University of Vermont, Burlington, VT 05405.
Peripheral endoplasmic reticulum (ER) tubules move along microtubules to interact with various organelles through membrane contact sites. Traditionally, ER moves by either sliding along stable microtubules via molecular motors or attaching to the plus ends of dynamic microtubules through tip attachment complexes (TAC). A recently discovered third process, hitchhiking, involves motile vesicles pulling ER tubules along microtubules.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA.
Unlabelled: Human papillomaviruses (HPVs) travel from the trans-Golgi network (TGN) to the condensed (mitotic) chromosomes during mitosis. Partially uncoated HPV capsids utilize a unique vesicular structure for trafficking and nuclear import, which is directed by the minor capsid protein L2. However, it is still unknown which precise factors facilitate post-TGN HPV trafficking to the nucleus.
View Article and Find Full Text PDFCell Mol Life Sci
November 2024
Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
Phosphoinositides help steer membrane trafficking routes within eukaryotic cells. In polarized exocytosis, which targets vesicular cargo to sites of polarized growth at the plasma membrane (PM), the two phosphoinositides phosphatidylinositol 4-phosphate (PI4P) and its derivative phosphatidylinositol 4,5-bisphosphate (PI(4,5)P) pave the pathway for vesicle transport from the Golgi to the PM. PI4P is a critical regulator of mechanisms that shape late Golgi membranes for vesicle biogenesis and release.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Biochemistry, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!