Understanding radiographic anatomy and the effects of varying patient and radiographic tube positioning on image quality can be a challenge for students. The purposes of this study were to develop and validate a novel technique for creating simulated radiographs using computed tomography (CT) datasets. A DICOM viewer (ORS Visual) plug-in was developed with the ability to move and deform cuboidal volumetric CT datasets, and to produce images simulating the effects of tube-patient-detector distance and angulation. Computed tomographic datasets were acquired from two dogs, one cat, and one horse. Simulated radiographs of different body parts (n = 9) were produced using different angles to mimic conventional projections, before actual digital radiographs were obtained using the same projections. These studies (n = 18) were then submitted to 10 board-certified radiologists who were asked to score visualization of anatomical landmarks, depiction of patient positioning, realism of distortion/magnification, and image quality. No significant differences between simulated and actual radiographs were found for anatomic structure visualization and patient positioning in the majority of body parts. For the assessment of radiographic realism, no significant differences were found between simulated and digital radiographs for canine pelvis, equine tarsus, and feline abdomen body parts. Overall, image quality and contrast resolution of simulated radiographs were considered satisfactory. Findings from the current study indicated that radiographs simulated using this new technique are comparable to actual digital radiographs. Further studies are needed to apply this technique in developing interactive tools for teaching radiographic anatomy and the effects of varying patient and tube positioning.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vru.12117DOI Listing

Publication Analysis

Top Keywords

simulated radiographs
16
image quality
12
body parts
12
digital radiographs
12
radiographs
9
novel technique
8
technique creating
8
creating simulated
8
radiographs computed
8
computed tomography
8

Similar Publications

Objectives: The objective of this study is to evaluate the incidence and volume of contrast medium extrusion when activated with a laser and to compare these outcomes with those of other irrigation techniques.

Materials And Methods: Sixteen cadaver mandibles containing 116 single-rooted teeth were prepared using conventional rotary instrumentation. The teeth were randomly assigned to four irrigation groups: side-vented needle, sonic irrigation, laser activation at the orifice, and laser activation at the middle third of the canal.

View Article and Find Full Text PDF

Implant-supported prosthetic rehabilitation for patients with severely atrophic jaws is challenging due to complex anatomical considerations and the limitations of conventional augmentation techniques. This study explores the potential of subperiosteal (juxta-osseous) implants as an alternative solution, using finite element analysis (FEA) to evaluate mechanical performance. Realistic jaw models, developed from radiographic data, are utilized to simulate various implant configurations and load scenarios.

View Article and Find Full Text PDF

Objective: This study aims to quantitatively compare the effects of standard needle irrigation (SNI), passive ultrasonic irrigation (PUI), EDDY, photon-initiated photoacoustic streaming (PIPS), and shock wave-enhanced emission photoacoustic streaming (SWEEPS) on the apical extrusion of irrigation solutions in teeth with severe canal curvature.

Materials And Methods: Seventy-five teeth with a single root and canal, and curvature angles ranging from 20° to 40°, were selected for this study. Root canal curvatures were measured from buccolingual and mesiodistal radiographs using ImageJ software (version 1.

View Article and Find Full Text PDF

[New perspectives on facial asymmetries thanks to 3D vision].

Orthod Fr

January 2025

35C impasse des brasseries, 54700 Pont-à-Mousson, France

Introduction: Modern orthodontics is undergoing a revolution with the advent of 3D imaging, offering unprecedented perspectives for the evaluation and treatment of facial asymmetries. These asymmetries, whether mandibular, maxillary, or dental, require a deeper understanding of their causes and their aesthetic and functional impact. Additionally, associated functional imbalances must be addressed for comprehensive management.

View Article and Find Full Text PDF

In abdominal X-ray examinations, radiosensitive organs such as the gonads within or near the imaging region are at risk of radiation exposure. Minimizing the dose to these organs is crucial to reducing unnecessary radiation. This study utilized optically stimulated luminescence dosimeters (OSLDs) to measure the radiation dose to the male gonads at varying kilovoltage peak (kVp) settings while keeping the milliampere-seconds (mAs) constant across different radiographic projections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!