Objective: The aim of this study was to investigate the effect of laser irradiation on root surface demineralization caused by local drug delivery systems (DDS), and to evaluate the effect of sealing on drug retention.
Background Data: The duration of supportive periodontal treatment (SPT) has increased with increasing life expectancy. Repeated root planing and DDS application during SPT should be reconsidered with regard to their effects on the root surface.
Methods: Extracted human teeth were collected, cut into 3 × 3 × 2 mm root dentin specimens, and divided randomly into eight groups with various combinations of Nd:YAG laser power (0, 0.5, 1, and 2 W), with and without DDS (minocycline HCl). Specimen microhardness and calcium (Ca) solubility were measured after treatment. The specimens (control and laser and DDS groups) were examined by scanning electron microscopy. Forty SPT patients were recruited, to assess the effect of periodontal pocket sealing on drug retention.
Results: Laser irradiation increased the microhardness of root specimens in an energy-dependent manner. Calcium solubilities decreased from the 0 W+DDS group to the 2.0 W+DDS group. The mean Ca solubilities in the 1.0 W+DDS and 2.0 W+DDS groups were significantly lower than in the 0 W+DDS group (p<0.01, p<0.001, respectively). Laser irradiation counteracted the softening effect of DDS. Morphologic change was observed in the 2 W+DDS group; however, no morphologic changes were observed in the control and the 1 W+DDS groups. The mean concentration of minocycline in the periodontal pocket 24 h after application was 252.79 ± 67.50 μg/mL.
Conclusions: Laser irradiation of the root surface inhibited the softening and decalcification caused by minocycline HCl. Sealing the periodontal pockets effectively improved drug retention. These results suggest that the combination of laser irradiation and DDS could benefit patients receiving repeated SPT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868274 | PMC |
http://dx.doi.org/10.1089/pho.2013.3561 | DOI Listing |
Int J Biol Macromol
December 2024
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Melanoma, an aggressive skin tumor, is prone to metastasis, significantly reducing patient survival rates once it occurs. Tumor microvascularity is a key factor in metastasis, making the inhibition of microvascular formation crucial. Emerging photothermal therapy (PTT) and microneedles (MNs) have garnered attention due to their non-invasive and controllable nature.
View Article and Find Full Text PDFInt J Pharm
December 2024
School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China. Electronic address:
Alzheimer's disease (AD) is a neurodegenerative disease that is significantly characterized by cognitive and memory impairments, which worsen significantly with age. In the late stages of AD, metal ion disorders and an imbalance of reactive oxygen species (ROS) levels occur in the brain microenvironment, which causes abnormal aggregation of β-amyloid (Aβ), leading to a significant worsening of the AD symptoms. Therefore, we designed a composite nanomaterial of macrophage membranes-encapsulated Prussian blue nanoparticles (PB NPs/MM).
View Article and Find Full Text PDFLasers Med Sci
December 2024
Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Jiangwangmiao Street 12, Xuanwu District, Nanjing, Jiangsu Province, 210042, China.
Traumatic scars negatively impact the patient's quality of life. Fractional 1064 nm Nd: YAG picosecond laser improves scars. However, the effect varies among individuals.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
Transition metal nitrides have extensive applications, including magnetic storage devices, hardware resistance coatings, and low-temperature fuel cells. This study investigated the structural, electrical, and mechanical properties of thin zirconium nitride (ZrN) films by examining the effects of laser irradiation times. Thin ZrN films were deposited on glass substrates using pulsed DC magnetron sputtering and irradiated with a diode laser for 6 and 10 min.
View Article and Find Full Text PDFBiosensors (Basel)
November 2024
Institute of Laser Engineering, Osaka University, Suita 565-0871, Osaka, Japan.
Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!