Application potential of carbon nanotubes in water treatment: A review.

J Environ Sci (China)

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.

Published: July 2013

Water treatment is the key to coping with the conflict between people's increasing demand for water and the world-wide water shortage. Owing to their unique and tunable structural, physical, and chemical properties, carbon nanotubes (CNTs) have exhibited great potentials in water treatment. This review makes an attempt to provide an overview of potential solutions to various environmental challenges by using CNTs as adsorbents, catalysts or catalyst support, membranes, and electrodes. The merits of incorporating CNT to conventional water-treatment material are emphasized, and the remaining challenges are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s1001-0742(12)60161-2DOI Listing

Publication Analysis

Top Keywords

water treatment
12
carbon nanotubes
8
treatment review
8
water
5
application potential
4
potential carbon
4
nanotubes water
4
review water
4
treatment key
4
key coping
4

Similar Publications

This study investigates the protective effects of resveratrol (RSV) against heat stress (HS)-induced testicular injury in rats. Climate change has exacerbated heat stress, particularly affecting male fertility by impairing testicular function and sexual behavior. A total of 32 rats were allocated into four experimental groups: control, RSV control, HS control, and RSV + HS.

View Article and Find Full Text PDF

An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.

View Article and Find Full Text PDF

Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).

View Article and Find Full Text PDF

Two porphyrin-based polymeric frameworks, SnP-BTC and SnP-BTB, as visible light photocatalysts for wastewater remediation were prepared by the solvothermal reaction of -dihydroxo-[5,15,10,20-tetrakis(phenyl)porphyrinato]tin(IV) (SnP) with 1,3,5-benzenetricarboxylic acid (HBTC) and 1,3,5-tris(4-carboxyphenyl)benzene (HBTB), respectively. The strong bond between the carboxylic acid group of HBTC and HBTB with the axial hydroxyl moiety of SnP leads to the formation of highly stable polymeric architectures. Incorporating the carboxylic acid group onto the surface of SnP changes the conformational frameworks as well as produces rigid structural transformation that includes permanent porosity, good thermodynamic stability, interesting morphology, and excellent photocatalytic degradation activity against AM dye and TC antibiotic under visible light irradiation.

View Article and Find Full Text PDF

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!