Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing.

Proc Natl Acad Sci U S A

Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208.

Published: November 2013

Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the -2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the -1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3845168PMC
http://dx.doi.org/10.1073/pnas.1318739110DOI Listing

Publication Analysis

Top Keywords

kinetic energy
16
shear strain
16
strain rate
16
strain energy
12
local kinetic
12
energy
9
strain
8
driving force
8
energy shear
8
shear
6

Similar Publications

This study examines how heart rate (HR) affects hemodynamics in a South African infant with Coarctation of the Aorta. Computed tomography angiography segments aortic coarctation anatomy; Doppler echocardiography derives inlet flow waveforms. Simulations occur at 100, 120, and 160 beats per minute, representing reduced, resting, and elevated HR levels.

View Article and Find Full Text PDF

Memristor-based feature learning for pattern classification.

Nat Commun

January 2025

Frontier Institute of Chip and System, Fudan University, Shanghai, 200433, China.

Inspired by biological processes, feature learning techniques, such as deep learning, have achieved great success in various fields. However, since biological organs may operate differently from semiconductor devices, deep models usually require dedicated hardware and are computation-complex. High energy consumption has made deep model growth unsustainable.

View Article and Find Full Text PDF

Ammonia electrosynthesis from nitrate using a stable amorphous/crystalline dual-phase Cu catalyst.

Nat Commun

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.

Renewable energy-driven electrocatalytic nitrate reduction reaction presents a low-carbon and sustainable route for ammonia synthesis under mild conditions. Yet, the practical application of this process is currently hindered by unsatisfactory electrocatalytic activity and long-term stability. Herein we achieve high-rate ammonia electrosynthesis using a stable amorphous/crystalline dual-phase Cu catalyst.

View Article and Find Full Text PDF

The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.

View Article and Find Full Text PDF

Tuning multi-scale pore structures in carbonaceous films via direct ink writing and sacrificial templates for efficient indoor formaldehyde removal.

J Hazard Mater

January 2025

Key Laboratory of Coastal Urban Resilient Infrastructures (Ministry of Education), College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing 100084, China; State Key Laboratory of Intelligent Geotechnics and Tunnelling, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Subtropical Building and Urban Science, Shenzhen 518060, China; Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing 100084, China. Electronic address:

The primary challenges impeding the extensive application of adsorption for indoor air purification have been low efficiency and effective capacity. To fill the research gap, we developed carbonaceous net-like adsorption films featuring multi-scale porous structures for efficient indoor formaldehyde removal. By optimizing the interfacial mass transfer and internal diffusion, we designed macro- to mesoscale meshes on the film surface and micro- to nano-scale pores within the materials, which were achieved by direct-ink-writing (DIW) printing and sacrificial template methods, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!