Aircraft measurements were used to estimate the CO2 emission rates of the city of Rome, assessed against high-resolution inventorial data. Three experimental flights were made, composed of vertical soundings to measure Planetary Boundary Layer (PBL) properties, and circular horizontal transects at various altitudes around the city area. City level emissions and associated uncertainties were computed by means of mass budgeting techniques, obtaining a positive net CO2 flux of 14.7 ± 4.5, 2.5 ± 1.2, and 10.3 ± 1.2 μmol m(-2) s(-1) for the three flights. Inventorial CO2 fluxes at the time of flights were computed by means of spatial and temporal disaggregation of the gross emission inventory, at 10.9 ± 2.5, 9.6 ± 1.3, and 17.4 ± 9.6 μmol m(-2) s(-1). The largest differences between the two dataset are associated with a greater variability of wind speed and direction in the boundary layer during measurements. Uncertainty partitioned into components related to horizontal boundary flows and top surface flow, revealed that the latter dominates total uncertainty in the presence of a wide variability of CO2 concentration in the free troposphere (up to 7 ppm), while it is a minor term with uniform tropospheric concentrations in the study area (within 2 ppm). Overall, we demonstrate how small aircraft may provide city level emission measurements that may integrate and validate emission inventories. Optimal atmospheric conditions and measurement strategies for the deployment of aircraft experimental flights are finally discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-013-3517-4 | DOI Listing |
Environ Sci Technol
January 2025
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), CNRS-Université Orléans-CNES, Orléans Cedex 2 45071, France.
The source of nitrous acid (HONO) and its importance in island or marine environments are poorly understood. Herein, based on comprehensive field measurements at a hilltop on Corsica Island, we find an inverse diel variation of HONO with higher concentrations during daytime. Night-time HONO budget analysis indicates significant HONO formation during air mass transport along the hillside.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120, Heidelberg, Germany.
The deep Southern Ocean (SO) circulation plays a key role in the storage and release of CO in Earth's climate system. The uptake and release of CO strongly depend on the redistribution of well and poorly ventilated deep ocean water masses. Recently, evidence was found for possible stronger Pacific deep water overturning and subsequent intrusion into the SO during periods of reduced AMOC.
View Article and Find Full Text PDFJ Pharm Policy Pract
January 2025
Global Health Centre, Graduate Institute of International and Development Studies, Geneva, Switzerland.
Background: The current mainstream pharmaceutical innovation system (PIS) is driven by the market-based logic of charging the highest prices societies will bear. Outcomes include unaffordable medicines, restricted access and pressure on health budgets. How can the innovation system change to deliver fairly-priced medicines?
Methods: We inductively developed a novel conceptual framework of the PIS as a complex adaptive system (CAS) analogous to a forest.
Sci Total Environ
January 2025
Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China. Electronic address:
Saltmarshes serve as repositories for various metal species, primarily due to vegetation removal and mineralization processes. However, the significance of potassium (K), one of the three major nutrients (nitrogen, phosphorus, and K) essential for plant growth, has often been overlooked, particularly in the context of saltmarshes where the mechanisms of K transport via porewater exchange remain poorly understood. To address this knowledge gap, we conducted field observations and laboratory analysis, and developed a Rn mass balance model to quantify K fluxes via porewater exchange under physical, biological, and anthropogenic drivers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Helsinki, Helsinki, Finland.
Secondary organic aerosols (SOAs) significantly impact Earth's climate and human health. Although the oxidation of volatile organic compounds (VOCs) has been recognized as the major contributor to the atmospheric SOA budget, the mechanisms by which this process produces SOA-forming highly oxygenated organic molecules (HOMs) remain unclear. A major challenge is navigating the complex chemical landscape of these transformations, which traditional hypothesis-driven methods fail to thoroughly investigate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!