Glia activation and neuroinflamation are major factors implicated in the aetiology of most neurodegenerative diseases (NDDs). Several agents and toxins have been known to be capable of inducing glia activation an inflammatory response; most of which are active substances that can cause oxidative stress by inducing production of reactive oxygen species (ROS). Neurogenesis on the other hand involves metabolic and structural interaction between neurogenic and glia cells of the periventricular zone (PVZ); a region around the third ventricle. This study investigates glia activation (GFAP), cell proliferation (Ki-67) and neuronal metabolism (NSE) during neurogenesis and oxidative stress by comparing protein expression in the PVZ against that of the parietal cortex. Adult Wistar Rats were treated with normal saline and 20 mg/Kg KCN for 7 days. The tissue sections were processed for immunohistochemistry to demonstrate glia cells (anti Rat-GFAP), cell proliferation (anti Rat-Ki-67) and neuronal metabolism (anti Rat-NSE) using the antigen retrieval method. The sections from Rats treated with cyanide showed evidence of neurodegeneration both in the PVZ and cortex. The distribution of glia cells (GFAP), Neuron specific Enolase (NSE) and Ki-67 increased with cyanide treatment, although the increases were more pronounced in the neurogenic cell area (PVZ) when compared to the cortex. This suggests the close link between neuronal metabolism and glia activation both in neurogenesis and oxidative stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11011-013-9446-7 | DOI Listing |
Sci Rep
January 2025
Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
As one of the most commonly used general anesthetics (GAs) in surgery, numerous studies have demonstrated the detrimental effects of sevoflurane exposure on myelination in the developing and elderly brain. However, the impact of sevoflurane exposure on intact myelin structure in the adult brain is barely discovered. Here, we show that repeated sevoflurane exposure, but not single exposure, causes hypomyelination and abnormal ultrastructure of myelin sheath in the prefrontal cortex (PFC) of adult male mice, which is considered as a critical brain region for general anesthesia mediated consciousness change.
View Article and Find Full Text PDFNeuroscience
January 2025
Biochemistry Department and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
In this special issue to celebrate the 30th anniversary of the Uruguayan Society for Neuroscience (SNU), we find it pertinent to highlight that research on glial cells in Uruguay began almost alongside the history of SNU and contributed to the understanding of neuron-glia interactions within the international scientific community. Glial cells, particularly astrocytes, traditionally regarded as supportive components in the central nervous system (CNS), undergo notable morphological and functional alterations in response to neuronal damage, a phenomenon referred to as glial reactivity. Among the myriad functions of astrocytes, metabolic support holds significant relevance for neuronal function, given the high energy demand of the nervous system.
View Article and Find Full Text PDFCell Rep
January 2025
Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan. Electronic address:
Proteasomes generate antigenic peptides presented on cell surfaces-a process that, in neuroglia, is highly responsive to external stimuli. However, the function of the self-antigens presented by CNS parenchymal cells remains unclear. Here, we report that the fidelity of neuroglial self-antigens is crucial to suppress encephalitogenic T cell responses by elevating regulatory T (Treg) cell populations.
View Article and Find Full Text PDFBackground: The earliest recognized biomarker of AD is deposition of Aβ amyloid that leads to formation of plaques and may, over time, trigger or at least be followed by gliosis/neuroinflammation and neurofibrillary tangles, accompanied by neurodegenerative changes including neuronal and synaptic loss. We have previously reported that semaphorin 4D (SEMA4D), the major ligand of plexin B receptors expressed on astrocytes, is upregulated in diseased neurons during progression of AD and Huntington's disease (HD). Binding of SEMA4D to PLXNB receptors triggers astrocyte reactivity, leading to loss of neuroprotective homeostatic functions, including downregulation of glutamate and glucose transporters (doi:10.
View Article and Find Full Text PDFBackground: Microglial activation is an early phenomenon in Alzheimer's disease (AD) that may occur prior to and independently of amyloid-β (Aβ) aggregation. Compelling experimental evidence suggests that the apolipoprotein E ε4 (APOEε4) allele may be a culprit of early microglial activation in AD. However, it is unclear whether the APOEε4 genotype is associated with microglial reactivity in the living human brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!