The cleavage of one N-O bond in NO2 by two equivalents of Mo(NRAr)3 has been shown to occur to form molybdenum oxide and nitrosyl complexes. The mechanism and electronic rearrangement of this reaction was investigated using density functional theory, using both a model Mo(NH2)3 system and the full [N((t)Bu)(3,5-dimethylphenyl)] experimental ligand. For the model ligand, several possible modes of coordination for the resulting complex were observed, along with isomerisation and bond breaking pathways. The lowest barrier for direct bond cleavage was found to be via the singlet η(2)-N,O complex (7 kJ mol(-1)). Formation of a bimetallic species was also possible, giving an overall decrease in energy and a lower barrier for reaction (3 kJ mol(-1)). Results for the full ligand showed similar trends in energies for both isomerisation between the different isomers, and for the mononuclear bond cleavage. The lowest calculated barrier for cleavage was only 21 kJ mol(-1)via the triplet η(1)-O isomer, with a strong thermodynamic driving force to the final products of the doublet metal oxide and a molecule of NO. Formation of the full ligand dinuclear complex was not accompanied by an equivalent decrease in energy seen with the model ligand. Direct bond cleavage via an η(1)-O complex is thus the likely mechanism for the experimental reaction that occurs at ambient temperature and pressure. Unlike the other known reactions between MoL3 complexes and small molecules, the second equivalent of the metal does not appear to be necessary, but instead irreversibly binds to the released nitric oxide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt52554f | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Chinese Academy of Sciences Dalian Institute of Chemical Physics, State Key Laboratory of Catalysis, 457 Zhongshan Road, 116023, Dalian, CHINA.
The reduction of CO2 to CO provides a promising approach to the production of valuable chemicals through CO2 utilization. However, challenges persist with the rapid deactivation and insufficient activity of catalysts. Herein, we developed a soft-hard dual-template method to synthesize layered MoS2 using inexpensive and scalable templates, enabling facile regulation of sulfur vacancies by controlling the number of layers.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:
In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Microbiology of the National Academy of Sciences of Belarus, Acad. Kuprevich str., 2, 220084 Minsk, Belarus.
There is an urgent need to develop effective and sustainable methods to decrease sulfonamide (SA) contamination of soil. Herein, a non-homogeneous system of zero-valent metal-biochar-based composites was proposed and tested for persulfate (PS) activation. This system employed zero-valent iron (Fe) as an electron donor to catalyze the cleavage of the OO bond in PS, thereby generating reactive oxygen species (ROS) that degrade SAs.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108 China. Electronic address:
The development of high-performance electrocatalysts for hydrogen evolution reaction (HER) in different pH conditionsis pivotal in producing green hydrogen, but remains challenging. Herein, we regulate the p-d orbitals hybridization between B and Pt for effective and durable HER at all pH ranges by controlling the inserted B atom. Consequently, the optimized B-doped Pt catalysts with 20 at.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!