We demonstrate gigahertz electro-optic modulator fabricated on low temperature polysilicon using excimer laser annealing technique compatible with CMOS backend integration. Carrier injection modulation at 3 Gbps is achieved. These results open up an array of possibilities for silicon photonics including photonics on DRAM and on flexible substrates.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.026688DOI Listing

Publication Analysis

Top Keywords

low temperature
8
deposited low
4
temperature silicon
4
silicon ghz
4
ghz modulator
4
modulator demonstrate
4
demonstrate gigahertz
4
gigahertz electro-optic
4
electro-optic modulator
4
modulator fabricated
4

Similar Publications

Thermoregulation: When cooling cools and heating heats.

Curr Biol

January 2025

Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Body temperature regulation in endotherms requires warming the body when ambient temperatures are low and cooling the body when they are high. Now, neural circuitry that can achieve the opposite has been identified - a phenomenon called thermoregulatory inversion.

View Article and Find Full Text PDF

Galactinol synthase gene 5 (MdGolS5) enhances the cold resistance of apples by promoting raffinose family oligosaccharide accumulation.

Plant Physiol Biochem

December 2024

College of Horticulture, Shenyang Agricultural University, Key Lab of Fruit Quality Development and Regulation of Liaoning Province, Shenyang, 110866, China. Electronic address:

Low-temperature stress is a limiting factor affecting the safe overwintering and stable production of apples. Galactinol, produced by galactinol synthase (GolS), is an important plant cryoprotectant. This study showed for the first time that exogenous spraying of apple saplings with 100 mg mL galactinol could effectively alleviate the damage from low-temperature stress.

View Article and Find Full Text PDF

Climate effects on honey bees can be mitigated by beekeeping management in Kenya.

J Environ Manage

January 2025

Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Gif-sur-Yvette, France; International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya. Electronic address:

In recent decades, worldwide concerns about the health of honey bees motivated the development of surveys to monitor the colony losses, of which Sub-Saharan Africa has had limited representation. In the context of climate change, understanding how climate affects colony losses has become fundamental, yet literature on this subject is scarce. For the first time, we conducted a survey to estimate the livestock decrease of honey bee colonies in Kenya for the year 2021-2022 to explore the effects of environmental conditions, such as temperature and precipitation, on livestock decrease.

View Article and Find Full Text PDF

Synergistic influence of extrusion conditions and whey protein isolate (WPI) incorporation on glycemic response and physicochemical characteristics of rice starch was studied. Box-Behnken Design was used to evaluate effect of process variables (rice starch:WPI ratio; feed moisture and barrel temperature) on quality characteristics of resistant starch-rich, low GI extruded snacks (RSLG-E). Optimum conditions for development of RSLG-E were WPI:18.

View Article and Find Full Text PDF

There has been an increase in foodborne vibriosis outbreaks globally, with Vibrio parahaemolyticus emerging as a foodborne issue in temperate commercial shellfish growing regions, including southern Australia. The food safety concerns associated with these microorganisms have led to the need for specific guidance on potential risk management strategies for their control. This is the first Australian multi-seasonal survey of V.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!