We report on the stoichiometric analysis of laser ablated brass plasma nanoparticles (NPs) in water and ambient air. Morphological study of the deposited NPs in water showed smaller spherical NPs compared to micrometer sized spherical particles in air. The smaller particles were Zn enriched and the concentration decreased with increases in size. Photoluminescence of particles at 380 nm corresponding to ZnO showed higher concentrations of Zn with smaller sized deposited NPs, whereas the micrometer sized particles showed multiple peaks at 415 and 440 nm, which implied that there was an abundance of the Cu fraction in the NPs. Plasma plume parameters, electron temperature, electron density, and evolution of the plasma plume were studied using optical emission spectroscopy and 2-dimensional imaging of the plume. The mass ablation rate in water was observed to be greater than that in air. Higher electron density and temperature of the plasmoid in water was attributed to confinement of the plasma plume near the target surface in water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.007592 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!