Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The light distribution of a light-emitting diode (LED), using remote phosphor with a patterned sapphire substrate, is evaluated in this study. Three kinds of substrates of the remote phosphors, including planar sapphire (PS), partially patterned sapphire (PPS), and fully patterned sapphire (FPS) are prepared. The LED with the remote phosphor of FPS delivers much better uniformity of the correlated color temperature (CCT) in a far-field pattern than the CCT obtained in the cases of PS and PPS. The results are majorly attributed to the improvement in the scattering ability of the blue light in the FPS; thereby increasing the excitation of the phosphor particles in comparison to the ability of the device assembled with the remote phosphor of PS or PPS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.007376 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!