AI Article Synopsis

Article Abstract

Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2012.0504DOI Listing

Publication Analysis

Top Keywords

stormwater infiltration
16
infiltration basin
12
infiltration basins
12
system dynamics
8
infiltration
8
nutrient control
8
dissolved nitrogen
8
stormwater
7
dynamics modeling
4
nitrogen
4

Similar Publications

Quantifying the Impact of Soil Moisture Sensor Measurements in Determining Green Stormwater Infrastructure Performance.

Sensors (Basel)

December 2024

Department of Civil and Environmental Engineering, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA.

The ability to track moisture content using soil moisture sensors in green stormwater infrastructure (GSI) systems allows us to understand the system's water management capacity and recovery. Soil moisture sensors have been used to quantify infiltration and evapotranspiration in GSI practices both preceding, during, and following storm events. Although useful, soil-specific calibration is often needed for soil moisture sensors, as small measurement variations can result in misinterpretation of the water budget and associated GSI performance.

View Article and Find Full Text PDF

Permeable asphalt pavement (PAP) is an efficient solution to stormwater management, allowing water to infiltrate through its layers. This reduces surface runoff and mitigates urban flooding risks. In addition to these hydrological benefits, PAP enhances water quality by filtering pollutants such as organic and inorganic materials and microplastics.

View Article and Find Full Text PDF

A new approach on design and verification of integrated sustainable urban drainage systems for stormwater management in urban areas.

J Environ Manage

January 2025

Politecnico di Milano, Department of Civil and Environmental Engineering, Italy. Electronic address:

Stormwater runoff control is often a concern due to urbanization and extreme rainfall events. Sustainable urban drainage systems can support traditional hydraulic networks in rainwater management by providing local runoff disposal and reuse of collected stormwater. The objective of the study is based on an innovative analytical-probabilistic approach for evaluating the functioning of rainwater tanks in stormwater management with the potential for using collected water for non-potable purposes.

View Article and Find Full Text PDF

Climate change adaptation in intensifying urban environments benefit from green stormwater infrastructure (GSI) investments on private residential yards. Nevertheless, planners are challenged to devise policy tools to mesh such a decentralized GSI approach with current land-use and social systems. Prior research has addressed the multi-scalar socio-economic barriers hindering household uptake, including technical and governance considerations.

View Article and Find Full Text PDF

Replacement depth and lifespan prediction of enhanced bioretention media under TSS impact conditions.

Environ Technol

November 2024

State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, People's Republic of China.

Article Synopsis
  • The enhanced bioretention system offers a new solution for managing stormwater issues caused by urbanization, focusing on the impact of different media over time.
  • The study analyzed various materials like river sand, loess, compost, and modified fillers to understand their effects on clogging, hydraulic conductivity, and porosity in a layered system.
  • Findings suggest that the infiltration rate decreases with accumulated total suspended solids (TSS), leading to a predicted system clogging time of 5.5 to 7.1 years and a necessary media replacement depth of about 35 cm, which aids in predicting system longevity and maintenance needs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!