High-throughput microscopy is an effective tool for rapidly collecting data on a large scale. However, high throughput comes at the cost of low spatial resolution. Here we introduce correlative light microscopy by combining fast automated widefield imaging, confocal microscopy and super-resolution microscopy. We demonstrate the potential of this approach for scalable experiments. The workflow consists of a robust approach for selecting cells of interest on a wide-field screening microscope at low resolution and subsequently re-localizing those cells with micrometer precision for confocal and super-resolution imaging. As a case study, we visualized and quantified cis- and trans-Golgi markers at increasing resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2144/000114099 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!