Angiotensin type 1a receptor-deficient mice develop diabetes-induced cardiac dysfunction, which is prevented by renin-angiotensin system inhibitors.

Cardiovasc Diabetol

Division of Molecular Cardiology, Department of Medicine, Texas A&M Health Science Center, College of Medicine; Scott & White; Central Texas Veterans Health Care System, 1901 South First Street, Building 205, Temple, Texas 76504, USA.

Published: November 2013

Background: Diabetes-induced organ damage is significantly associated with the activation of the renin-angiotensin system (RAS). Recently, several studies have demonstrated a change in the RAS from an extracellular to an intracellular system, in several cell types, in response to high ambient glucose levels. In cardiac myocytes, intracellular angiotensin (ANG) II synthesis and actions are ACE and AT1 independent, respectively. However, a role of this system in diabetes-induced organ damage is not clear.

Methods: To determine a role of the intracellular ANG II in diabetic cardiomyopathy, we induced diabetes using streptozotocin in AT1a receptor deficient (AT1a-KO) mice to exclude any effects of extracellular ANG II. Further, diabetic animals were treated with a renin inhibitor aliskiren, an ACE inhibitor benazeprilat, and an AT1 receptor blocker valsartan.

Results: AT1a-KO mice developed significant diastolic and systolic dysfunction following 10 wks of diabetes, as determined by echocardiography. All three drugs prevented the development of cardiac dysfunction in these animals, without affecting blood pressure or glucose levels. A significant down regulation of components of the kallikrein-kinin system (KKS) was observed in diabetic animals, which was largely prevented by benazeprilat and valsartan, while aliskiren normalized kininogen expression.

Conclusions: These data indicated that the AT1a receptor, thus extracellular ANG II, are not required for the development of diabetic cardiomyopathy. The KKS might contribute to the beneficial effects of benazeprilat and valsartan in diabetic cardiomyopathy. A role of intracellular ANG II is suggested by the inhibitory effects of aliskiren, which needs confirmation in future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3830441PMC
http://dx.doi.org/10.1186/1475-2840-12-169DOI Listing

Publication Analysis

Top Keywords

diabetic cardiomyopathy
12
cardiac dysfunction
8
renin-angiotensin system
8
diabetes-induced organ
8
organ damage
8
glucose levels
8
role intracellular
8
intracellular ang
8
ang diabetic
8
at1a receptor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!