AI Article Synopsis

Article Abstract

Yeast respiratory deficient mutants are resistant to paraquat. Similar resistance is caused by lowering the respiration by physiological mechanisms, as well as by some inhibitors of electron transfer chain of mitochondria. Presented results suggest that the major contribution of mitochondria to overall toxicity of paraquat in yeast is a consequence of very low level of cytochrome P-450, and presumably its presumably its reductase in aerobic yeast cells. In mammalian cells this enzyme is considered as the most important factor involved in paraquat toxicity. Mitochondrial cytochromes seem to be the first targets of damaging effects of paraquat.

Download full-text PDF

Source

Publication Analysis

Top Keywords

paraquat toxicity
8
paraquat
5
role respiratory
4
respiratory chain
4
chain paraquat
4
yeast
4
toxicity yeast
4
yeast yeast
4
yeast respiratory
4
respiratory deficient
4

Similar Publications

Background: Paraquat (PQ) is a widely used pesticide, can cause severe intoxication and respiratory failure. Myrtenol (Mrl), an essential oil derived in various plants, exhibits several biological properties, including anti-inflammatory and antioxidant activities. This study aims to investigate the protective potential of Mrl against oxidative stress and inflammation caused by PQ exposure.

View Article and Find Full Text PDF

Aim: To report on the management of a toddler who had accidental ingestion of an unknown amount of paraquat, with treatment including continuous renal replacement therapy (CRRT), steroids and antifibrinolytics at a tertiary-level health system.

Methods: A 16-month-old child weighing 10 kg accidentally ingested an unknown amount of Gramoxone containing paraquat. The child was transferred to a tertiary centre Paediatric Intensive Care Unit (PICU) where she was electively intubated and commenced on CRRT at 7 hours and 15 minutes post-ingestion.

View Article and Find Full Text PDF

Herbicide paraquat dichloride, a potent redox agent found its way to natural water bodies and influences their health; however, its impact on the reproductive health of fish is potentially less studied and requires clear investigation. This study was conducted to elucidate its effect on the gonadal health of female fish, Channa punctatus over 60 days. The 96-h LC of test herbicide was calculated as 0.

View Article and Find Full Text PDF

Proteomic characterization of molecular mechanisms of paraquat-induced lung injury in a mouse model.

Respir Res

January 2025

Emergency Department, The First Hospital of China Medical University, No.155 North Nanjing Street, Heping District, Shenyang, Liaoning, 110001, China.

Background: We sought to explore the molecular mechanisms underpinning acute lung injury (ALI) caused by poisoning with paraquat (PQ).

Methods: Selection mice were intraperitoneally injected with PQ at 40 mg/kg, whereas controls were injected with sterile saline. On days 2, 7, and 14 after administration, mice were anesthetized and sacrificed, and lung tissue was removed.

View Article and Find Full Text PDF

The study aimed to compare the oxidative stress status in the kidney tissue of rats treated with paraquat and nanoparaquat. The levels of oxidative stress markers, including malondialdehyde (MDA), total antioxidant capacity (TAC), and thiol groups (TTG), were measured in the kidney tissue samples. A total of forty male Wistar rats were randomly assigned to eight groups, each consisting of five rats: a control group, a paraquat (PQ) group, an N-acetylcysteine (NAC) group, groups receiving nanoparaquat α and β (α and β), groups receiving PQ and NAC (PQ + NAC), and groups receiving nanoparaquat α and β with NAC (+ NACα and β).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!