A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Complex N-glycosylation stabilizes surface expression of transient receptor potential melastatin 4b protein. | LitMetric

N-glycosylation is important for the function and regulation of ion channels. We examined the role of N-glycosylation of transient receptor potential melastatin (Trpm) 4b, a membrane glycoprotein that regulates calcium influx. Trpm4b was expressed in vivo in all rat tissues examined. In each tissue, Trpm4b had a different molecular mass, between ∼129 and ∼141 kDa, but all reverted to ∼120 kDa following treatment with peptide:N-glycosidase F, consistent with N-glycosylation being the principal form of post-translational modification of Trpm4b in vivo. In six stable isogenic cell lines that express different levels of Trpm4b, two forms were found, high mannose, core-glycosylated and complex, highly glycosylated (HG), with HG-Trpm4b comprising 85% of the total Trpm4b expressed. For both forms, surface expression was directly proportional to the total Trpm4b expressed. Complex N-glycosylation doubled the percentage of Trpm4b at the surface, compared with high mannose N-glycosylation. Mutation of the single N-glycosylation consensus sequence at Asn-988 (Trpm4b-N988Q), located near the pore-forming loop between transmembrane helices 5 and 6, prevented glycosylation, but did not prevent surface expression, impair formation of functional membrane channels, or alter channel conductance. In transfection experiments, the time courses for appearance of HG-Trpm4b and Trpm4b-N988Q on the surface were similar. In experiments with cycloheximide inhibition of protein synthesis, the time course for disappearance of HG-Trpm4b from the surface was much slower than that for Trpm4b-N988Q. We conclude that N-glycosylation is not required for surface expression or channel function, but that complex N-glycosylation plays a crucial role in stabilizing surface expression of Trpm4b.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868754PMC
http://dx.doi.org/10.1074/jbc.M113.530584DOI Listing

Publication Analysis

Top Keywords

surface expression
20
complex n-glycosylation
12
trpm4b expressed
12
surface
8
transient receptor
8
receptor potential
8
potential melastatin
8
n-glycosylation
8
trpm4b
8
high mannose
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!