A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Small area estimation for semicontinuous skewed spatial data: an application to the grape wine production in Tuscany. | LitMetric

Small area estimation for semicontinuous skewed spatial data: an application to the grape wine production in Tuscany.

Biom J

Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti" (DiSIA), Università degli Studi di Firenze, Viale Morgagni, 59 - I 50134, Florence, Italy.

Published: January 2014

Linear-mixed models are frequently used to obtain model-based estimators in small area estimation (SAE) problems. Such models, however, are not suitable when the target variable exhibits a point mass at zero, a highly skewed distribution of the nonzero values and a strong spatial structure. In this paper, a SAE approach for dealing with such variables is suggested. We propose a two-part random effects SAE model that includes a correlation structure on the area random effects that appears in the two parts and incorporates a bivariate smooth function of the geographical coordinates of units. To account for the skewness of the distribution of the positive values of the response variable, a Gamma model is adopted. To fit the model, to get small area estimates and to evaluate their precision, a hierarchical Bayesian approach is used. The study is motivated by a real SAE problem. We focus on estimation of the per-farm average grape wine production in Tuscany, at subregional level, using the Farm Structure Survey data. Results from this real data application and those obtained by a model-based simulation experiment show a satisfactory performance of the suggested SAE approach.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bimj.201200271DOI Listing

Publication Analysis

Top Keywords

small area
12
area estimation
8
data application
8
grape wine
8
wine production
8
production tuscany
8
sae approach
8
random effects
8
sae
5
estimation semicontinuous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!