A novel magnetic inorganic-organic nanohybrid material H6P2W18O62/pyridino-Fe3O4 (HPA/TPI-Fe3O4) was fabricated and performed as an efficient, eco-friendly, and highly recyclable catalyst for the solvent-free, one-pot, and multi-component synthesis of various substituted 1-amidoalkyl-2-naphthols from the reaction of β-naphthol, an aldehyde, and benzamide with good to excellent yields (47-94%) and in a short span of time (25-60 min). The nanohybrid catalyst was prepared by the chemical anchoring of Wells-Dawson heteropolyacid H6P2W18O62 onto the surface of modified Fe3O4 nanoparticles with N-[3-(triethoxysilyl)propyl]isonicotinamide (TPI) linker. The magnetically recoverable catalyst was easily recycled at least eight times without any loss of catalytic activity. XRD, TEM, UV-vis, and FTIR confirmed that the heteropolyacid H6P2W18O62 is well dispersed on the surface of the solid support and its structure is retained after immobilization on the pyridine modified Fe3O4 nanoparticles. This protocol is developed as a safe and convenient alternate method for the synthesis of 1-amidoalkyl-2-naphthols utilizing an eco-friendly, and a highly reusable catalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3dt51594j | DOI Listing |
Nanoscale
January 2025
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, and Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, P.R. China.
Currently, the study of cuproptosis focuses on the Cu-induced morphology changes in mitochondria (Mito), and the observation of the effect of endoplasmic reticulum (ER)-related Cu content on cuproptosis is relatively lacking. Herein, we have developed a hydroxyflavone (HF)-based NIR excited two-photon fluorescent probe, BHCO, that exhibits specific recognition of Cu with high resolution. BHCO-Cu (Cu2BC) can lead to DLAT protein aggregation, triggering cuproptosis.
View Article and Find Full Text PDFDrug Deliv Transl Res
January 2025
Model System for Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany.
Two features of macrophages make them attractive for targeted transport of drugs: they efficiently take up a broad spectrum of nanoparticles (NPs) and, by sensing cytokine gradients, they are attracted to the sites of infection and inflammation. To expand the potential of macrophages as drug carriers, we investigated whether macrophages could be simultaneously coloaded with different types of nanoparticles, thus equipping individual cells with different functionalities. We used superparamagnetic iron oxide NPs (SPIONs), which produce apoptosis-inducing hyperthermia when exposed to an alternating magnetic field (AMF), and co-loaded them on macrophages together with drug-containing NPs (inorganic-organic nanoparticles (IOH-NPs) or mesoporous silica NPs (MSNs)).
View Article and Find Full Text PDFAcc Chem Res
January 2025
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
School of Chemistry and Chemical Engineering, Center of Free Electron Laser & High Magnetic Field, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China.
Considering the strong electron-donating ability and the superior biocompatibility, the integration of zero-valent iron nanostructure Fe (electron-reservoir) and zero-valent boron nanostructure B offers great promise for fabricating novel ferroptosis nanoagents. Nevertheless, the controlled and facile synthesis of alloyed Fe and B nanostructure-FeB nanometallic glasses (NMGs) has remained a long-standing challenge. Herein, a complexion-reduction strategy is proposed for the controlled synthesis of FeB NMGs with greater electron donating capacity to activate the molecular oxygen for improved ferroptosis therapy.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
January 2025
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Argentina.
Prompted by visionary political leaders and a flowering economy, the University of La Plata was founded in 1905, the third Argentinian university after the Universities of Cordoba (1613) and Buenos Aires (1821). Differing from the older universities, more prone to professional formation, the new university was oriented towards teaching and scientific research following western European academic tradition. Along with the university was created the Institute of Physics, the first of its kind in Latin America.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!