DNA-aneuploidy may reflect the malignant nature of mesenchymal proliferations and herald gross genomic instability as a mechanistic factor in tumor genesis. DNA-ploidy and -index were determined by flow cytometry in canine inflammatory or neoplastic mesenchymal tissues and related to clinico-pathological features, biological behavior and p53 gene mutational status. Half of all sarcomas were aneuploid. Benign mesenchymal neoplasms were rarely aneuploid and inflammatory lesions not at all. The aneuploidy rate was comparable to that reported for human sarcomas with significant variation amongst subtypes. DNA-ploidy status in canines lacked a relation with histological grade of malignancy, in contrast to human sarcomas. While aneuploidy was related to the development of metastases in soft tissue sarcomas it was not in osteosarcomas. No relation amongst sarcomas was found between ploidy status and presence of P53 gene mutations. Heterogeneity of the DNA index between primary and metastatic sarcoma sites was present in half of the cases examined. Hypoploidy is more common in canine sarcomas and hyperploid cases have less deviation of the DNA index than human sarcomas. The variation in the presence and extent of aneuploidy amongst sarcoma subtypes indicates variation in genomic instability. This study strengthens the concept of interspecies variation in the evolution of gross chromosomal aberrations during cancer development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712725 | PMC |
http://dx.doi.org/10.3390/cancers4041300 | DOI Listing |
Eur J Med Res
January 2025
Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North No.1838, Guangzhou, 510515, Guangdong, People's Republic of China.
The identification of oncogenic gene fusions in diffuse gliomas may serve as potential therapeutic targets and prognostic indicators, representing a novel strategy for treating gliomas consistent with the principles of personalized medicine. This study identified detectable oncogene fusions in glioma patients through an integrated analysis of genomic and transcriptomic data, which encompassed whole exon sequencing and next-generation RNA sequencing. In addition, this study also conducted a comparison of the genetic characteristics, tumor microenvironment, mutation burden and survival between glioma patients with or without gene fusions.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October, Egypt.
Calcium hydroxide nanoparticles (Ca(OH)NPs) possess potent antimicrobial activities and unique physical and chemical properties, making them valuable across various fields. However, limited information exists regarding their effects on genomic DNA integrity and their potential to induce apoptosis in normal and cancerous human cell lines. This study thus aimed to evaluate the impact of Ca(OH)NPs on cell viability, genomic DNA integrity, and oxidative stress induction in human normal skin fibroblasts (HSF) and cancerous hepatic (HepG2) cells.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece. Electronic address:
Gliomas constitute the most prevalent primary central nervous system tumors, often characterized by complex metabolic profile, genomic instability, and aggressiveness, leading to frequent relapse and high mortality rates. Traditional treatments are commonly ineffective because of gliomas increased heterogeneity, invasive characteristics and resistance to chemotherapy. Among several pathways affecting cellular homeostasis, cuproptosis has recently emerged as a novel type of programmed cell death, triggered by accumulation of copper ions.
View Article and Find Full Text PDFNeoplasia
January 2025
Department of Pathology, Anatomy and Cell Biology and the Clinical and Translational Research Center of Excellence, Meharry Medical College, 1005 Dr. D.B. Todd Jr. Boulevard, Nashville, TN 37208, USA.
Background: Cancer stem cells in human tumors have been defined by stem cell markers, embryonal signaling pathways and characteristic biology, ie., namely the ability to repopulate the proliferating population. However, even if these properties can be demonstrated within a tumor cell subpopulation, it does not mean that they are truly hierarchical stem cells because they could have been derived from the proliferating population in a reversible manner.
View Article and Find Full Text PDFNat Genet
January 2025
Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
Huntington's disease, one of more than 50 inherited repeat expansion disorders, is a dominantly inherited neurodegenerative disease caused by a CAG expansion in HTT. Inherited CAG repeat length is the primary determinant of age of onset, with human genetic studies underscoring that the disease is driven by the CAG length-dependent propensity of the repeat to further expand in the brain. Routes to slowing somatic CAG expansion, therefore, hold promise for disease-modifying therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!