Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The potential of Presep(®) PolyChelate as a chelating resin was studied in detail. The chelating resin with extraction capacity for Cu of 0.30 mmol L(-1) could quantitatively extract Cd, Co, Cu, Fe, Mo, Ni, Pb, V, and Zn at pH 4 or 5.5; however, only very scant amounts of Na, K, Mg, and Ca were captured at pH levels below 7. The quantitative extraction could be achieved in 100 - 1000 mL of artificial seawater and at a flow rate of 3 - 30 mL min(-1). The performance of Presep(®) PolyChelate was compared to the other aminocarboxylic acid-type chelating resins, including Nobias Chelate-PA1, Chelex 100, Muromac B-1, Lewatit TP 207, and NTA Superflow, under the same conditions. The solid-phase extraction of the nine elements in the certified reference material (ES-L-1, ground water) and a commercially available table salt was also demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2116/analsci.29.1107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!