Planta
Pflanzenphysiologie, Universität Bayreuth, D-8580, Bayreuth, Federal Republic of Germany.
Published: January 1989
This study was undertaken in order to demonstrate the extent to which the activity of the plasmalemma H(+)-ATPase compensates for the charge and acidity flow caused by the sugar-proton symport in cells of chlorella vulgaris Beij.. Detailed analysis of H(+) and K(+) fluxes from and into the medium together with measurements of respiration, cytoplasmic pH, and cellular ATP-levels indicate three consecutive phases after the onset of H(+) symport. Phase 1 occurred immediately after addition of sugar, with an uptake of H(+) by the hexoseproton symport and charge compensation by K(+) loss from the cells and, to a smaller degree, by loss of another ion, probably a divalent cation. This phase coincided with strong membrane depolarization. Phase 2 started approximately 5 s after addition of sugar, when the acceleration of the H(+)-ATPase caused a slow-down of the K(+) efflux, a decrease in the cellular ATP level and an increase in respiration. The increased respiration was most probably responsible for a pronounced net acidification of the medium. This phase was inhibited in deuterium oxide. In phase 3, finally, a slow rate of net H(+) uptake and K(+) loss was established for several further minutes, together with a slight depolarization of the membrane. There was hardly any pH change in the cytoplasm, because the cytoplasmic buffering capacity was high enough to stabilize the pH for several minutes despite the net H(+) fluxes. The quantitative participation of the several phases of H(+) and K(+) flow depended on the pH of the medium, the ambient Ca(2+) concentration, and the metabolic fate of the transported sugar. The results indicate that the activity of the H(+)-ATPase never fully compensated for H(+) uptake by the sugar-symport system, because at least 10% of symport-caused charge inflow was compensated for by K(+) efflux. The restoration of pH in the cytoplasm and in the medium was probably achieved by metabolic reactions connected to increased glycolysis and respiration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00392149 | DOI Listing |
Anal Bioanal Chem
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biomedical Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Insulin bound with ligand molecules can improve its bioavailability in oral formulations. In this work, the interactions between insulin and bile acids of taurocholic acid (TCA) and glycocholic acid (GCA) are characterized using different mass spectrometry (MS) methods. Electrospray (ESI)-MS analysis revealed that GCA and TCA could interact with insulin individually or together through non-covalent bonds, and the products included mGCA-insulin, nTCA-insulin, and mGCA-nTCA-insulin complexes.
View Article and Find Full Text PDFNanocrystalline formulations typically contain stabilizing additives to minimize the risk of particle growth or agglomeration. This risk is particularly relevant when the nanosuspension is converted into a solid drug product as the original state of the nanosuspension should be restored upon redispersion of the drug product in vivo. In this work, the behavior of different nonionic and anionic surfactants in solid nanocrystalline formulations and their effects on redispersibility under biorelevant conditions were investigated.
View Article and Find Full Text PDFUnlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFACS Cent Sci
January 2025
Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China.
Herein, we report a visible-light-induced charge-transfer-complex-enabled dicarboxylation and deuterocarboxylation of C=C bonds with oxalate as a masked CO source under catalyst-free conditions. In this reaction, we disclosed the first example that the tetrabutylammonium oxalate could be able to aggregate with aryl substrates via π-cation interactions to form the charge transfer complexes, which subsequently triggers the single electron transfer from the oxalic dianion to the ammonium countercation under irradiation of 450 nm bule LEDs, releasing CO and CO radical anions. Diverse alkenes, dienes, trienes, and indoles, including challenging trisubstituted olefins, underwent dicarboxylation and anti-Markovnikov deuterocarboxylation with high selectivity to access valuable 1,2- and 1,4-dicarboxylic acids as well as indoline-derived diacids and β-deuterocarboxylic acids under mild conditions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, Frontiers Science Center for Transformative Molecules, CHINA.
A photoelectrocatalytic method is presented that achieves direct decarboxylative C(sp3)-P coupling, providing a modular route to alkylphosphinates and alkylphosphonates from readily available carboxylic acids. The success of this reaction hinges on the synergistic combination of electrochemical anodic oxidation and photocatalytic ligand to metal charge transfer (LMCT) decarboxylation. By employing P(III) reagents as limiting reagents, our approach enables efficient alkyl modification of medicinally important nucleosides and complex molecules derived phosphonites, which were challenging to access by existing methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.