The purpose of this study is to investigate the effect of implant neck design and cortical bone thickness by means of 3-D linearly elastic finite element analysis and to analyze primary and secondary stability of clinical evidence based on micromotion and principal stress. Four commercial dental implants, comparable in size, for a type IV bone and mandibular segments were created. Various parameters were considered, including the osseointegration condition (non- and full bonded), force direction (vertical and horizontal) and cortical bone thickness (0.3, 0.5 and 1mm). The force was considered a static load applied at the top of the platform. The magnitudes of the vertical and horizontal loading direction were 500 N and 250 N. Micromotion and principal stresses were employed to evaluate the failure of osseointegration and bone overloading, respectively. The results show that Maximum stress of the peri-implant bone decreased as cortical bone thickness increased. The stress concentration regions were located at the implant neck between the cortical bone and cancellous bone. The micromotion level in full osseointegration is less than that in non-osseointegration and it also decreases as a increasing of cortical bone thickness. Consequently, cortical bone thickness is a key factor for primary stability.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BME-130945DOI Listing

Publication Analysis

Top Keywords

cortical bone
24
bone thickness
20
implant neck
12
bone
11
finite element
8
element analysis
8
primary stability
8
type bone
8
micromotion principal
8
vertical horizontal
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!