DNA binding studies of terbium(III)-deferasirox (Tb3+-DFX) complex were monitored to understand the reaction mechanism and introduce a new probe for the assay of DNA. In the present work, UV absorption spectrophotometry, fluorescence spectroscopy, circular dichroism (CD), cyclic voltammetry (CV) and viscosity measurement were employed to study the interactions of Tb3+-DFX with calf thymus DNA (ctDNA). The binding of Tb3+-DFX complex to ctDNA showed a hyperchromic effect in the absorption spectra and the increase in fluorescence quenching effect (amount) of Tb3+-DFX complex in the presence of ctDNA. The binding constants (Kb) for the complex with ctDNA were estimated to be 1.8×10(4) M(-1) through UV absorption spectrophotometry and fluorescence spectroscopy. Upon addition of the complex, clear decreases were observed in the viscosity of ctDNA. The CD spectra indicated that there are certain detectable conformational changes in the DNA double helix when the complex was added. The CV method showed that both anodic and cathodic peak potentials of Tb3+-DFX complex showed negative shifts on the addition of the ctDNA. Further, competitive methylene blue binding studies with fluorescence spectroscopy have shown that the complex can bind to ctDNA through nonintercalative mode. The experimental results suggest that Tb3+-DFX complex binds to DNA via groove binding and/or electrostatic binding mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2013.09.073 | DOI Listing |
Spectrochim Acta A Mol Biomol Spectrosc
September 2014
Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
DNA binding studies of terbium(III)-deferasirox (Tb3+-DFX) complex were monitored to understand the reaction mechanism and introduce a new probe for the assay of DNA. In the present work, UV absorption spectrophotometry, fluorescence spectroscopy, circular dichroism (CD), cyclic voltammetry (CV) and viscosity measurement were employed to study the interactions of Tb3+-DFX with calf thymus DNA (ctDNA). The binding of Tb3+-DFX complex to ctDNA showed a hyperchromic effect in the absorption spectra and the increase in fluorescence quenching effect (amount) of Tb3+-DFX complex in the presence of ctDNA.
View Article and Find Full Text PDFFood Chem
June 2011
Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
A simple spectrofluorimetric method is described for the determination of buparvaquone (BPQ), based on its quenching effect on the fluorescence intensity of Tb(3+)-deferasirox (DFX) complex as a fluorescent probe. The excitation and emission wavelengths were 328 and 545nm, respectively. The optimum conditions for determination of BPQ were investigated considering the effects of various affecting parameters.
View Article and Find Full Text PDFAnal Chim Acta
February 2007
Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040 Regensburg, Germany.
The interaction of the terbium-difloxacin complex (Tb-DFX) with DNA has been examined by using UV-vis absorption and luminescence spectroscopy. The Tb-DFX complex shows an up to 85-fold enhancement of luminescence intensity upon titration with DNA. The long decay times allow additional detection schemes like time-resolved measurements in microplate readers to enhance sensitivity by off-gating short-lived background luminescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!