Disruption of endothelial adherens junction by invasive breast cancer cells is mediated by reactive oxygen species and is attenuated by AHCC.

Life Sci

Department of Internal Medicine, Division of Cardiology, The University of Texas Health Science Center at Houston, USA; Texas Heart Institute at St. Luke's Episcopal Hospital, Houston, TX, USA. Electronic address:

Published: December 2013

Aims: The effect of antioxidants on treatment of cancer is still controversial. Previously, we demonstrated that interaction of breast cancer cells with endothelial cells leads to tyrosine phosphorylation of VE-cadherin and disruption of endothelial adherens junction (EAJ). The molecular mechanism underlying the anti-metastatic effects of mushroom-derived active hexode correlated compound (AHCC) remains elusive.

Main Methods: Several cellular and biochemical techniques were used to determine the contribution of oxidative stress in the disruption of EAJ and to test this hypothesis that AHCC inhibits the breast cancer cell-induced disruption of EAJ.

Key Findings: Interaction of breast cancer cells (MDA-MB-231 cells) with human umbilical vein endothelial cells (HUVECs) leads to an increase in generation of reactive oxygen species (ROS). Treatment of HUVECs with H2O2 or phorbol myristate acetate (PMA) led to tyrosine phosphorylation of VE-cadherin, dissociation of β-catenin from VE-cadherin complex and increased transendothelial migration (TEM) of MDA-MB-231 cells. Induction of VE-cadherin tyrosine phosphorylation by PMA or by interaction of MDA-MB-231 cells with HUVECs was mediated by HRas and protein kinase C-α signaling pathways. Disruption of EAJ and phosphorylation of VE-cadherin induced by interaction of MDA-MB-231 cells with HUVECs were attenuated when HUVECs were pretreated with an antioxidant, N-acetylcysteine (NAC) or AHCC. AHCC inhibited TEM of MDA-MB-231 cells and generation of ROS induced by interaction of MDA-MB-231 cells with HUVECs.

Significance: Our studies suggest that ROS contributes to disruption of EAJ induced by interaction of MDA-MB-231 cells with HUVECs and AHCC attenuates this alteration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2013.10.027DOI Listing

Publication Analysis

Top Keywords

mda-mb-231 cells
28
breast cancer
16
cells huvecs
16
interaction mda-mb-231
16
cells
12
cancer cells
12
tyrosine phosphorylation
12
phosphorylation ve-cadherin
12
disruption eaj
12
induced interaction
12

Similar Publications

Objective: A new library of Thiazolidine-2,4-dione-biphenyl Derivatives derivatives (10a-j) was designed and synthesized. All compounds were characterized by spectral data. Further, these were evaluated for their in vitro anticancer activity.

View Article and Find Full Text PDF

Background: Ferroptosis has emerged as a promising therapeutic target in cancer treatment. CEP55, a key regulator of cell mitosis, plays a significant role in the tumorigenesis of many malignancies. In this study, we elucidated the function of CEP55 in the ferroptosis of breast cancer (BC).

View Article and Find Full Text PDF

Introduction: Breast cancer is one of the most common cancers in women and poses a serious threat to women's health. Circular RNAs (circRNAs) have been found to be specifically expressed in cancers and regulate the growth and death of tumor cells. The role of circRNAs in breast cancer remain unknown.

View Article and Find Full Text PDF

An optimal amount of labile zinc (Zn ) is essential for proliferation of human cells, where Zn levels that are too high or too low cause cell cycle exit. Tumors of the breast have been characterized by high levels of total Zn . Given the role of Zn in proliferation of human cells and elevation of zinc in breast cancer tumors, we examined the concentration of total and labile Zn across a panel of 5 breast cancer cell lines, compared to the normal MCF10A cell line.

View Article and Find Full Text PDF

Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.

Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!