Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The role of counterion condensation as a dominant force governing the stability of DNA duplexes and triplexes is well established. In contrast, the effect of counterion condensation on the stability of G-quadrupex conformations is poorly understood. Unlike other ordered nucleic acid structures, G-quadruplexes exhibit a specific binding of counterions (typically, Na(+) or K(+)) which are buried inside the central cavity and coordinated to the O6 carbonyls of the guanines forming the G-quartets. While it has been known that the G-quadruplex-to-coil transition temperature, TM, increases with an increase in the concentration of the stabilizing ion, the contributions of the specific (coordination in the central cavity) and nonspecific (condensation) ion binding have not been resolved. In this work, we separate the two contributions by studying the change in TM of preformed G-quadruplexes following the addition of nonstabilizing ions Li(+), Cs(+), and TMA(+) (tetramethylammonium). In our studies, we used two G-quadruplexes formed by the human telomeric sequences which are distinct with respect to the folding topology and the identity and the number of sequestered stabilizing ions. Our data suggest that the predominant ionic contribution to G-quadruplex stability comes from the specifically bound Na(+) or K(+) ions and not from counterion condensation. We offer molecular rationalizations to the observed insensitivity of G-quadruplex stability to counterion condensation and emphasize the need to expand such studies to assess the generality of our findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2013.10.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!