DNA strand displacement system running logic programs.

Biosystems

Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and Science, Silesian University in Opava, 74601 Opava, Czech Republic; Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, Campus de Montegancedo s/n, Boadilla del Monte, 28660 Madrid, Spain. Electronic address:

Published: January 2014

The paper presents a DNA-based computing model which is enzyme-free and autonomous, not requiring a human intervention during the computation. The model is able to perform iterated resolution steps with logical formulae in conjunctive normal form. The implementation is based on the technique of DNA strand displacement, with each clause encoded in a separate DNA molecule. Propositions are encoded assigning a strand to each proposition p, and its complementary strand to the proposition ¬p; clauses are encoded comprising different propositions in the same strand. The model allows to run logic programs composed of Horn clauses by cascading resolution steps. The potential of the model is demonstrated also by its theoretical capability of solving SAT. The resulting SAT algorithm has a linear time complexity in the number of resolution steps, whereas its spatial complexity is exponential in the number of variables of the formula.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2013.10.006DOI Listing

Publication Analysis

Top Keywords

resolution steps
12
dna strand
8
strand displacement
8
logic programs
8
strand proposition
8
displacement system
4
system running
4
running logic
4
programs paper
4
paper presents
4

Similar Publications

Background: The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings.

View Article and Find Full Text PDF

Background And Aims: Obesity is a global health concern. Bariatric surgery offers reliably effective and durable weight loss and improvements of other comorbid conditions. However, the accessibility of bariatric surgery remains limited.

View Article and Find Full Text PDF

Using HBmito Crimson to Observe Mitochondrial Cristae Through STED Microscopy.

Bio Protoc

January 2025

Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Material Science, Hebei University. Baoding, China.

Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICI) have improved outcomes in non-small cell lung cancer (NSCLC). Nevertheless, the clinical benefit of ICI as monotherapy or in combination with chemotherapy remains widely varied and existing biomarkers have limited predictive value. We present an analysis of ENLIGHT-DP, a novel transcriptome-based biomarker directly from histopathology slides, in patients with lung adenocarcinoma (LUAD) treated with ICI and platinum-based chemotherapy.

View Article and Find Full Text PDF

The Balbiani body is formed by microtubule-controlled molecular condensation of Buc in early oogenesis.

Curr Biol

January 2025

Department of Developmental Biology and Cancer Research, The Hebrew University of Jerusalem Faculty of Medicine, Ein-Kerem Campus, Jerusalem 9112102, Israel; Institute for Medical Research, Israel-Canada (IMRIC), Ein-Kerem Campus, Jerusalem 9112102, Israel. Electronic address:

Vertebrate oocyte polarity has been observed for two centuries and is essential for embryonic axis formation and germline specification, yet its underlying mechanisms remain unknown. In oocyte polarization, critical RNA-protein (RNP) granules delivered to the oocyte's vegetal pole are stored by the Balbiani body (Bb), a membraneless organelle conserved across species from insects to humans. However, the mechanisms of Bb formation are still unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!