AI Article Synopsis

  • The study compares five surface waters to assess factors contributing to membrane fouling during drinking water treatment using low-pressure membranes.
  • Filtration tests indicated that common water quality indexes (like DOC and turbidity) were inadequate in predicting fouling levels, while fluorescence analysis and biopolymer concentration measurements provided better correlations.
  • Coagulation with polyaluminum chloride was effective in reducing fouling, and the established relationship between biopolymer levels and fouling rates was applicable to both raw and coagulated waters.

Article Abstract

Although low-pressure membranes (microfiltration (MF) or ultrafiltration (UF)) have become viable options for drinking water treatment, problems caused by membrane fouling must still be addressed. The objective of this study was to compare five different surface waters and to identify a relevant index of water quality that can be used for prediction of the fouling potential of the water. Bench-scale filtration tests were carried out with commercially available hollow-fiber MF membranes. Fairly long-term (a few days) filtrations in the constant-flow mode were carried out with automatic backwash. Membrane fouling in this study was shown to be irreversible as a result of the periodic backwash carried out throughout of the operation. Easily accessible indexes of water quality including dissolved organic carbon (DOC), UV absorbance, Ca concentration and turbidity could not explain the degree of fouling encountered in the filtration tests. Fluorescence excitation-emission matrix (EEM) could provide information on the presence of protein-like substances in water, and peaks for protein showed some correlation with the membrane fouling. Biopolymer (characterized by high molecular weights and insensitivity to UV light absorption) concentrations in the five waters determined by liquid chromatography with organic carbon detection (LC-OCD) exhibited an excellent correlation with the fouling rates. Coagulation with polyaluminum chloride could mitigate membrane fouling in all cases. The extent of fouling seen with coagulated waters was also correlated with biopolymer concentrations. The relationship between biopolymer concentrations and the fouling rates established for the raw waters could also be applied to the coagulated waters. These results suggested that the contribution of biopolymers to membrane fouling in the present study was significant, an observation that was supported by the analysis of foulants extracted at the termination of each test. Biopolymer concentrations determined by LC-OCD might be used as a key indicator of fouling potential of water for low-pressure membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2013.10.030DOI Listing

Publication Analysis

Top Keywords

membrane fouling
24
fouling
12
biopolymer concentrations
12
surface waters
8
low-pressure membranes
8
water quality
8
fouling potential
8
potential water
8
filtration tests
8
fouling study
8

Similar Publications

Microalgae-based membrane bioreactor for wastewater treatment, biogas production, and sustainable energy: a review.

Environ Res

January 2025

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia; Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Jatinangor, West Java 45363, Indonesia.

Managing wastewater and using renewable energy sources are challenges in achieving Sustainable Development Goals. This study provides an overview of the factors influencing the performance of algae-based membrane bioreactors (AMBRs) for contaminant removal from wastewater and biogas. This review highlights that the performance of AMBRs in removing total phosphorus (TP) and nitrogen (N) from wastewater can reach up to 93% and 97%, depending on parameters such as pH, hydraulic retention time (HRT), and algae concentration.

View Article and Find Full Text PDF

Leveraging almost hydrophobic PVDF membrane and in-situ ozonation in O/UF/BAC system for superior anti-fouling and rejection performance in drinking water treatment.

Water Res

January 2025

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

The almost hydrophobic PVDF membrane (PVDF matrix) commonly exhibited excellent performance in pollutant rejection but with poor anti-fouling performance. This study intended to develop the rejection performance and enhance anti-fouling of the PVDF membrane in an O/UF/BAC system for high quality water production through leveraging the advantages of in-situ ozonation and the nature of the PVDF membrane. Reduced density gradient (RDG) analysis demonstrated that the PVDF membrane exhibited excellent ozone resistance by reducing hydrogen bonds and electrostatic interactions between the membrane surface and ozone.

View Article and Find Full Text PDF

Copper-containing industrial wastewater, characterized by strong acidity, high ionic strength, and various competing metals, presents significant challenges for Cu(II) recovery. To address these issues, an electric field-enhanced ultrafiltration process was developed, assisted with a functional polyelectrolyte with high selectivity for Cu(II). The polyelectrolyte, termed PPEI, was synthesized by grafting picolyl groups onto polyethyleneimine (PEI), enhancing its affinity for Cu(II).

View Article and Find Full Text PDF

Surface Hydrophilic Modification of Polypropylene by Nanosecond Pulsed Ar/O Dielectric Barrier Discharge.

Materials (Basel)

December 2024

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China.

Polypropylene (PP) membranes have found diverse applications, such as in wastewater treatment, lithium-ion batteries, and pharmaceuticals, due to their low cost, excellent mechanical properties, thermal stability, and chemical resistance. However, the intrinsic hydrophobicity of PP materials leads to membrane fouling and filtration flux reduction, which greatly hinders the applications of PP membranes. Dielectric barrier discharge (DBD) is an effective technique for surface modification of materials because it generates a large area of low-temperature plasma at atmospheric pressure.

View Article and Find Full Text PDF

Food waste condensate (FWC) is a valuable source for recovering short-chain fatty acids (SCFAs) through methods such as supported liquid membrane contactors. Containing organic compounds like acetate, propionate, and butyrate, FWC offers a rich substrate for efficient SCFA extraction. Recovering SCFAs from FWC provides notable environmental advantages, including reducing waste and generating high-value products for industries such as bioenergy and chemical production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!