G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2013.10.036DOI Listing

Publication Analysis

Top Keywords

g-protein-coupled receptor
8
design synthesis
4
synthesis novel
4
novel 3-benzo[d]oxazol-2-yl-5-1-piperidin-4-yl-1h-pyrazol-4-ylpyridin-2-amine
4
3-benzo[d]oxazol-2-yl-5-1-piperidin-4-yl-1h-pyrazol-4-ylpyridin-2-amine derivatives
4
derivatives selective
4
selective g-protein-coupled
4
receptor kinase-2
4
kinase-2 inhibitors
4
inhibitors g-protein-coupled
4

Similar Publications

High molecular weight hyaluronan (HMWH) inhibits hyperalgesia induced by diverse pronociceptive inflammatory mediators and their second messengers, in rats of both sexes. However, the hyperalgesia induced by ligands at 3 pattern recognition receptors, lipopolysaccharide (a toll-like receptor 4 agonist), lipoteichoic acid (a toll-like receptor 2/6 agonist), and nigericin (a NOD-like receptor family, pyrin domain containing 3 activator), and oxaliplatin and paclitaxel chemotherapy-induced peripheral neuropathy are only attenuated in males. After gonadectomy or intrathecal administration of an antisense to G-protein-coupled estrogen receptor 30 (GPER) mRNA, HMWH produces antihyperalgesia in females.

View Article and Find Full Text PDF

Anisotropic interactions for continuum modeling of protein-membrane systems.

J Chem Phys

December 2024

Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California 94550, USA.

In this work, a model for anisotropic interactions between proteins and cellular membranes is proposed for large-scale continuum simulations. The framework of the model is based on dynamic density functional theory, which provides a formalism to describe the lipid densities within the membrane as continuum fields while still maintaining the fidelity of the underlying molecular interactions. Within this framework, we extend recent results to include the anisotropic effects of protein-lipid interactions.

View Article and Find Full Text PDF

Unidirectional and bidirectional causation between smoking and blood DNA methylation: evidence from twin-based Mendelian randomisation.

Eur J Epidemiol

January 2025

Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, 800 E. Leigh St., Suite 100, Richmond, VA, 23298, USA.

Cigarette smoking is associated with numerous differentially-methylated genomic loci in multiple human tissues. These associations are often assumed to reflect the causal effects of smoking on DNA methylation (DNAm), which may underpin some of the adverse health sequelae of smoking. However, prior causal analyses with Mendelian Randomisation (MR) have found limited support for such effects.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

University of Zurich, Zurich, Zurich, Switzerland.

Background: Metabotropic glutamate receptor 5 (mGluR5) modulates excitatory glutamatergic synaptic transmission and plays an important role in learning and memory, and in the pathphysiology of Alzheimer's disease (AD). Here, we aimed to assess the alterations of mGluR5 in the hippocampus of AD patients and mouse model, and the association with amyloid pathology.

Method: Immunofluorescence staining was performed on postmortem brain tissue from 35 AD patients and 36 control patients, as well as on the brain tissue slices from 15 months-old 3×Tg and arcAβ mouse models of AD amyloidosis.

View Article and Find Full Text PDF

Background: The G protein-coupled receptor GPR39 is heavily associated with the pathogenesis of neurologic disorders, including Alzheimer's disease (AD) and related dementia (ADRD). Its dysregulation of zinc 2+ (Zn) processes triggers metallic dyshomeostasis, oxidative stress, neuroinflammation, microtubule destabilization, synaptic dysfunction, and tau phosphorylation-all hallmarks of neurodegeneration. Hence, pharmacologic modulation of GPR39 could offer an effective treatment against AD and ADRD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!