A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using multivariate data reduction to predict postsurgery memory decline in patients with mesial temporal lobe epilepsy. | LitMetric

Using multivariate data reduction to predict postsurgery memory decline in patients with mesial temporal lobe epilepsy.

Epilepsy Behav

Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Krembil Neuroscience Centre, University Health Network, Toronto, Ontario, Canada; Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada. Electronic address:

Published: February 2014

Predicting postsurgery memory decline is crucial to clinical decision-making for individuals with mesial temporal lobe epilepsy (mTLE) who are candidates for temporal lobe excisions. Extensive neuropsychological testing is critical to assess risk, but the numerous test scores it produces can make deriving a formal prediction of cognitive change quite complex. In order to benefit from the information contained in comprehensive memory assessment, we used principal component analysis (PCA) to simplify neuropsychological test scores (presurgical and pre- to postsurgical change) obtained from a cohort of 56 patients with mTLE into a few easily interpretable latent components. We next performed discriminant analyses using presurgery latent components to categorize seizure laterality and then regression analyses to assess how well presurgery latent components could predict postsurgery memory decline. Finally, we validated the predictive power of these regression models in an independent sample of 18 patients with mTLE. Principal component analysis identified three significant latent components that reflected IQ, verbal memory, and visuospatial memory, respectively. Together, the presurgery verbal and visuospatial memory components classified 80% of patients with mTLE correctly according to their seizure laterality. Furthermore, the presurgery verbal memory component predicted postsurgery verbal memory decline, while the presurgery visuospatial memory component predicted visuospatial memory decline. These regression models also predicted postsurgery memory decline successfully in the independent cohort of patients with mTLE. Our results demonstrate the value of data reduction techniques in identifying cognitive metrics that can characterize laterality of damage and risk of postoperative decline.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yebeh.2013.09.043DOI Listing

Publication Analysis

Top Keywords

memory decline
24
postsurgery memory
16
patients mtle
16
latent components
16
visuospatial memory
16
memory
12
temporal lobe
12
verbal memory
12
data reduction
8
predict postsurgery
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!