Type 1 diabetes (T1D) shows ∼40% concordance rate in monozygotic twins (MZ) suggesting a role for environmental factors and/or epigenetic modifications in the etiology of the disease. The aim of our study was to dissect the contribution of epigenetic factors, particularly, DNA methylation (DNAm), to the incomplete penetrance of T1D. We performed DNAm profiling in lymphocyte cell lines from 3 monozygotic (MZ) twin pairs discordant for T1D and 6 MZ twin pairs concordant for the disease using HumanMethylation27 BeadChip. This assay assesses the methylation state of 27,578 CpG sites, mostly located within proximal promoter regions. We identified 88 CpG sites displaying significant methylation changes in all T1D-discordant MZ twin pairs. Functional annotation of the genes with distinct CpG methylation profiles in T1D samples showed differential DNAm of immune response and defense response pathways between affected and unaffected twins. Integration of DNAm data with GWAS data mapped several known T1D associated genes, HLA, INS, IL-2RB, CD226, which showed significant differences in DNAm between affected and unaffected of twins. Our findings suggest that abnormalities of DNA methylation patterns, known to regulate gene transcription, may be involved in the pathogenesis of T1D.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995844 | PMC |
http://dx.doi.org/10.1016/j.jaut.2013.10.001 | DOI Listing |
Pathology
December 2024
Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
In the course of the last decade, the pathological diagnosis of many tumours of the central nervous system (CNS) has transitioned from a purely histological to a combined histological and molecular approach, resulting in a more precise 'histomolecular diagnosis'. Unfortunately, translation of this refinement in CNS tumour diagnostics into more effective treatment strategies is lagging behind. There is hope though that incorporating the assessment of predictive markers in the pathological evaluation of CNS tumours will help to improve this situation.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain. Electronic address:
Epigenetic alterations are hallmarks of cancer, with histone modifiers playing critical roles in gene transcription, DNA homeostasis, and other nuclear functions. Lysine-specific demethylase 1 (LSD1), a key regulator of H3K4 methylation, has emerged as a promising pharmacological target in cancer treatment, including leukemia. Acute lymphoblastic leukemia (ALL), the most common pediatric cancer, remains a significant therapeutic challenge due to limited understanding of how epigenetic therapy impacts leukemia dissemination.
View Article and Find Full Text PDFTheriogenology
January 2025
Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
Cryopreservation of rooster semen is a reproductive technology carried out to boost genetic gain and productivity in commercial flocks of chicken. However, semen freezing significantly reduces the quality and fertilizing potential of spermatozoa. This study examined cryoprotective effects of the mitochondria-targeted antioxidant mitoquinol mesylate added to the freezing extender by assessing post-thaw characteristics of rooster sperm.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:
Chromatin regulatory proteins are expressed broadly and assumed to exert the same intrinsic function across cell types. Here, we report that 14 chromatin regulators undergo evolutionary-conserved neuron-specific splicing events involving microexons. Among them are two components of a histone demethylase complex: LSD1 H3K4 demethylase and the H3K4me0-reader PHF21A.
View Article and Find Full Text PDFImmun Inflamm Dis
January 2025
Second Department of Oncology, Guangdong Second Provincial General Hospital, Guangzhou, China.
Background: SET domain-containing protein 4 (SETD4) is a histone methyltransferase that has been shown to modulate cell proliferation, differentiation, and inflammatory responses by regulating histone H4 trimethylation (H4K20me3). Previous reports have demonstrated its function in the quiescence of cancer stem cells as well as drug resistance in several cancers. A limited number of systematic studies have examined SETD4's role in the tumor microenvironment, pathogenesis, prognosis, and therapeutic response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!