The lack of vascularization within tissue-engineered constructs remains the primary cause of construct failure following implantation. Porous constructs have been successful in allowing for vessel infiltration without requiring extensive matrix degradation. We hypothesized that the rate and maturity of infiltrating vessels could be enhanced by complementing the open pore structure with the added delivery of DNA encoding for angiogenic growth factors. Both 100 and 60 μm porous and non-porous hyaluronic acid hydrogels loaded with pro-angiogenic (pVEGF) or reporter (pGFPluc) plasmid nanoparticles were used to study the effects of pore size and DNA delivery on angiogenesis in a mouse subcutaneous implant model. GFP-expressing transfected cells were found inside all control hydrogels over the course of the study, although transfection levels peaked by week 3 for 100 and 60 μm porous hydrogels. Transfection in non-porous hydrogels continued to increase over time corresponding with continued surface degradation. pVEGF transfection levels were not high enough to enhance angiogenesis by increasing vessel density, maturity, or size, although by 6 weeks for all pore size hydrogels more hydrogel implants were positive for vascularization when pVEGF polyplexes were incorporated compared to control hydrogels. Pore size was found to be the dominant factor in determining the angiogenic response with 60 μm porous hydrogels having more vessels/area present than 100 μm porous hydrogels at the initial onset of angiogenesis at 3 weeks. The results of this study show promise for the use of polyplex loaded porous hydrogels to transfect infiltrating cells in vivo and guide tissue regeneration and repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3941464PMC
http://dx.doi.org/10.1016/j.biomaterials.2013.10.014DOI Listing

Publication Analysis

Top Keywords

μm porous
16
porous hydrogels
16
100 μm
12
pore size
12
hydrogels
10
dna delivery
8
hyaluronic acid
8
acid hydrogels
8
control hydrogels
8
transfection levels
8

Similar Publications

A high temperature-resistant, strong, and self-healing double-network hydrogel for profile control in oil recovery.

J Colloid Interface Sci

February 2025

School of Mining and Petroleum Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada T6G 1H9. Electronic address:

Hydrogels are widely used in profile control to plug high-permeability zones in oil recovery. In this study, a novel double-network (DN) hydrogel is developed for profile control. The two networks of the prepared hydrogel are polyacrylamide (PAAm) crosslinked by N,N'-Methylenebisacrylamide (MBAA) and konjac glucomannan (KGM) crosslinked by borax (B), respectively.

View Article and Find Full Text PDF

Excessive reservoir water poses significant challenges in the oil and gas industry by diminishing hydrocarbon recovery efficiency and generating environmental and economic complications. Conventional polymer flooding techniques, although beneficial, often prove inadequate under conditions of elevated temperature and salinity, highlighting the need for more resilient materials. In this research, two types of acrylamide-based preformed particle gels (PPGs) were synthesized, as follows: polyelectrolyte and polyampholyte.

View Article and Find Full Text PDF

Osteochondral damage, affecting the articular cartilage and the underlying subchondral bone, presents significant challenges in clinical treatment. Such defects, commonly seen in knee and ankle joints, vary from small localized lesions to larger defects. Current medical therapies encounter several challenges, such as donor shortages, drug side effects, high costs, and rejection problems, often resulting in only temporary relief.

View Article and Find Full Text PDF

The urgency of addressing water scarcity and exponential population rise has necessitated the use of sustainable desalination for clean water production, while conventional thermal desalination processes consume fossil fuel with brine rejection. As a promising solution to sustainable solar thermal distillation, we report a scalable mangrove-mimicked device for direct solar vapor generation and passive salt collection without brine discharge. Capillarity-driven salty water supply and continuous vapor generation are ensured by anti-corrosion porous wicking stem and multi-layer leaves, which are made of low-cost superhydrophilic nanostructured titanium meshes.

View Article and Find Full Text PDF

The research focuses on utilizing gamma irradiation to synthesize polyacrylic acid-co-polyacrylamide p(AAm-co-AAc) hydrogels. The effect of synthetic parameters on physicochemical features of p(AAm-co-AAc) hydrogls were examined, including acrylic acid (AAc): acrylamide (AAm) weight ratios, monomer concentration, and gamma irradiation dosage (kGy). At the optimum synthetic conditions (30 kGy and 75% AAc), different chemical modifications are explored to incorporate sulfonate, hydroxyl, carboxyl, cysteine, thiol, and amine functional groups within the bare hydrogel (Cpd 0) structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!