Diagnosis of osteoporosis by extraction of trabecular features from hip radiographs using support vector machine: an investigation panorama with DXA.

Comput Biol Med

Department of Biomedical Engineering, SRM University, Chennai 603203, Tamil Nadu, India. Electronic address:

Published: November 2013

Background: Lifespan and its quality can be improved by early diagnosis of osteoporosis. Analysis of trabecular boundness on digital hip radiographs could be useful for identifying subjects with low bone mineral density (BMD) or osteoporosis. The main aim of our study was to evaluate the ability of a kernel-based support vector machine (SVM) with respect to diagnosis and add to knowledge about the trabecular features of digital hip radiographs for identifying subjects with low BMD.

Method: In this paper we present an SVM kernel classifier-based computer-aided diagnosis (CAD) system for osteoporotic risk detection using digital hip radiographs. Initially, the original radiograph was intensified, then trabecular features such as boundness, orientation, solidity of spur and delta were evaluated and radial bias function (RBF) based discrimination was manifested. The next step was the evaluation of the diagnostic capability of the proposed method in order to spot subjects with low BMD at the femoral neck in 50 (50.7 ± 14.3 years) South Indian women with no previous history of osteoporotic fracture. Out of 50 subjects, 28 were used to train the classifier and the other 22 were used for testing.

Results: The proposed system has achieved the highest classification accuracy documented so far by means of a fivefold cross-validation analysis with mean accuracy of 90% (95% confidence interval (CI): 82 to 98%); sensitivity and positive predictive value (PPV) were 90% (95% CI: 82 to 98%) and 89% (95% CI: 81 to 97%), respectively. Pearson's correlation was observed at the level of p<0.001, between extracted image trabecular features with age and BMDs measured by dual energy x-ray absorptiometry (DXA). Extracted image features also demonstrated significant differences between high and low BMD groups at the level of p<0.001.

Conclusion: Our findings suggest that the proposed CAD system with SVM would be useful for spotting women vulnerable to osteoporotic risk.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2013.09.002DOI Listing

Publication Analysis

Top Keywords

hip radiographs
16
trabecular features
12
digital hip
12
subjects low
12
diagnosis osteoporosis
8
support vector
8
vector machine
8
radiographs identifying
8
identifying subjects
8
90% 95%
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!