Background: The compounds 1,4-napthoquinone (1,4-NQ), bis-(2,4-dinitrophenyl)sulfide (2,4-DNPS), 4-nitrobenzothiadiazole (4-NBT), 3-dimethylaminopropiophenone (3-DAP) and menadione (MD) were tested for antimalarial activity against both chloroquine (CQ)-sensitive (D6) and chloroquine (CQ)-resistant (W2) strains of Plasmodium falciparum through an in vitro assay and also for analysis of non-covalent interactions with P. falciparum thioredoxin reductase (PfTrxR) through in silico docking studies.
Results: The inhibitors of PfTrxR namely, 1,4-NQ, 4-NBT and MD displayed significant antimalarial activity with IC50 values of < 20 μM and toxicity against 3T3 cell line. 2,4-DNPS was only moderately active. In silico docking analysis of these compounds with PfTrxR revealed that 2,4-DNPS, 4-NBT and MD interact non-covalently with the intersubunit region of the enzyme.
Conclusions: In this study, tools for the identification of PfTrxR inhibitors using phenotyphic screening and docking studies have been validated for their potential use for antimalarial drug discovery project.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828397 | PMC |
http://dx.doi.org/10.1186/1752-153X-7-175 | DOI Listing |
Commun Biol
January 2025
Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.
View Article and Find Full Text PDFCerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, with resistance to antimalarial drugs, including artemisinin-based combination therapies(ACTs), posing a significant threat. CD4+ naive cells expressing CCR7 are known to play a protective role, as they readily migrate to secondary lymphoid tissues activated by CCL19 chemokines. In an effort to address this challenge, we investigated the impact of Annona muricata, an herbaceous and immunomodulatory plant, on CCL19 concentration.
View Article and Find Full Text PDFCurr Drug Discov Technol
January 2025
Institute of Pharmacy, AMITY University, Jaipur, Rajasthan.
Background: Our research highlights the synthesis of newer antimalarial compounds using molecular modeling studies.
Objective: The study investigates a series of isocryptolepine derivatives from previous literature, focusing on their biological activities as antimalarial agents.
Methods: Computational methods such as molecular docking and QSAR were employed to gain insights into the interaction between the synthesized compounds and the target enzyme PfDHFR-TS.
Clin Rheumatol
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 1 Shuaifuyuan, Beijing, 100730, China.
To synthesize available evidence on predictive factors associated with systemic lupus erythematosus (SLE) flares during pregnancy, we systematically searched MEDLINE, Embase, and the Cochrane Library through January 2024 for observational studies on risk and protective factors of SLE flares during pregnancy. Odds ratios (OR) and mean differences (MD), as well as their 95% confidence intervals (CI) were used to quantify effect sizes. We employed fixed-effect or random-effect models based on heterogeneity assessments (I statistics).
View Article and Find Full Text PDFUnlabelled: is a high-priority organism for the development of new antibacterial treatments. We found that the antimalarial medication mefloquine (MFQ) permeabilized the bacterial cell membrane of , decreased membrane fluidity, and caused physical injury to the membrane. MFQ also maintained activity across different pH conditions (PH range 5-8).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!