Populational heterogeneity vs. temporal fluctuation in Escherichia coli flagellar motor switching.

Biophys J

Biodynamic Optical Imaging Center and School of Life Sciences, Peking University, Beijing, People's Republic of China; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan. Electronic address:

Published: November 2013

The dynamic switching of the bacterial flagellar motor regulates cell motility in bacterial chemotaxis. It has been reported under physiological conditions that the switching bias of the flagellar motor undergoes large temporal fluctuations, which reflects noise propagating in the chemotactic signaling network. On the other hand, nongenetic heterogeneity is also observed in flagellar motor switching, as a large group of switching motors show different switching bias and frequency under the same physiological condition. In this work, we present simultaneous measurement of groups of Escherichia coli flagellar motor switching and compare them to long time recording of single switching motors. Consistent with previous studies, we observed temporal fluctuations in switching bias in long time recording experiments. However, the variability in switching bias at the populational level showed much higher volatility than its temporal fluctuation. These results suggested stable individuality in E. coli motor switching. We speculate that uneven expression of key regulatory proteins with amplification by the ultrasensitive response of the motor can account for the observed populational heterogeneity and temporal fluctuations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3824298PMC
http://dx.doi.org/10.1016/j.bpj.2013.09.043DOI Listing

Publication Analysis

Top Keywords

flagellar motor
20
motor switching
16
switching bias
16
temporal fluctuations
12
switching
11
populational heterogeneity
8
heterogeneity temporal
8
temporal fluctuation
8
escherichia coli
8
coli flagellar
8

Similar Publications

Transcription Regulation of Flagellins: A Structural Perspective.

Biochemistry

January 2025

Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Third Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India.

Bacterial flagella are complex molecular motors that are essential for locomotion and host colonization. They consist of 30 different proteins expressed in varying stoichiometries. Their assembly and function are governed by a hierarchical transcriptional regulatory network with multiple checkpoints primarily regulated by sigma factors.

View Article and Find Full Text PDF

Genomic characteristics and virulence of common but overlooked Yersinia intermedia, Y. frederiksenii, and Y. kristensenii in food.

Int J Food Microbiol

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Article Synopsis
  • Three species of Yersinia (Y. intermedia, Y. frederiksenii, and Y. kristensenii), common foodborne pathogens, were analyzed using genomic data to uncover their potential threat, revealing significant genomic diversity and a noteworthy presence in Europe and Asia.
  • Y. intermedia demonstrated a high level of accessory genes, suggesting adaptability and the ability to acquire beneficial traits, while all three species contained various mobile genetic elements including plasmids and insertion sequences.
  • Differences in antibiotic resistance genes and virulence gene composition were noted, with Y. kristensenii being the most virulent, containing the most virulence genes, while Y. frederiksenii showed unique pathogenic mechanisms.
View Article and Find Full Text PDF

Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .

Proc Natl Acad Sci U S A

January 2025

Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.

Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .

View Article and Find Full Text PDF

Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .

Proc Natl Acad Sci U S A

January 2025

Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.

Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.

View Article and Find Full Text PDF

The Helicobacter pylori flagellar motor contains several accessory structures that are not found in the archetypal Escherichia coli and Salmonella enterica motors. H. pylori hp0838 encodes a previously uncharacterized lipoprotein and is in an operon with flgP, which encodes a motor accessory protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!