Five microorganisms were used to construct a biosensor for the evaluation of low biochemical oxygen demand (BOD) in rivers. Characterization and comparison of BOD biosensors were performed using two standard solutions: glucose and glutamic acid (GGA) and artificial wastewater (AWW). Pseudomonas putida SG10 demonstrated the best response when using AWW. Trichosporon cutaneum IFO10466, however, had an extremely poor response. When evaluating the biosensor response to each component of AWW, all of the microorganisms except T. cutaneum displayed the highest response to tannic acid. In a comparison of the two standard solutions for all the microorganisms, the biosensor responses of GGA were approximately three times higher than those of AWW were. In the BOD determination of environmental samples, the biosensor BOD values evaluated using AWW were slightly lower or equivalent to BOD5 values, whereas the biosensor BOD values evaluated using GGA were considerably lower. These results suggest that GGA is suitable for the detection of high BOD in industrial wastewaters and factory effluents, while AWW is suitable for the detection of low BOD in rivers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2013.09.031 | DOI Listing |
Sensors (Basel)
December 2024
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
In the case of waveguide-based devices, once they are fabricated, their optical properties are already determined and cannot be dynamically controlled, which limits their applications in practice. In this paper, an isosceles triangular-coupling structure which consists of an isosceles triangle coupled with a two-bus waveguide is proposed and researched numerically and theoretically. The coupled mode theory (CMT) is introduced to verify the correctness of the simulation results, which are based on the finite difference time domain (FDTD).
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
Hexavalent chromium (Cr(VI)) contamination in soil presents significant risks due to its high toxicity to both the environment and human health. Renewable, low-cost natural materials offer promising solutions for Cr(VI) reduction and soil remediation. However, the effects of unmodified tea leaves and tea-derived biochar on chromium-contaminated soils remain inadequately understood.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers University, Piscataway, NJ 08854, USA.
Background: Pregnancy is a unique stage of the life course characterized by trade-offs between the nutritional, immune, and metabolic needs of the mother and fetus. The Camden Study was originally initiated to examine nutritional status, growth, and birth outcomes in adolescent pregnancies and expanded to study dietary and molecular predictors of pregnancy complications and birth outcomes in young women.
Methods: From 1985-2006, 4765 pregnant participants aged 12 years and older were recruited from Camden, NJ, one of the poorest cities in the US.
Nutrients
December 2024
Key Laboratory of Plants Adversity Adaptation and Genetic Improvement in Cold and Arid Regions of Inner Mongolia, Inner Mongolia Agricultural University, Hohhot 010018, China.
Background: Bunge (CM) shows promising potential for managing rheumatoid arthritis (RA) and digestive disorders, attributed to its rich content of bioactive compounds such as polyphenols and flavonoids. Despite its common use in herbal tea, the specific mechanisms underlying CM's anti-inflammatory and joint-protective effects remain unclear, limiting its development as a functional food. This study investigated the effects of aqueous CM extract on RA in collagen-induced arthritis (CIA) rats and explored the underlying mechanisms.
View Article and Find Full Text PDFNutrients
December 2024
Pediatric Hepatology and Liver Transplant Unit, Department of Pediatrics, ERN Rare Liver ERN TransplantChild, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
Lysosomal acid lipase deficiency (LAL-D) is an ultra-rare lysosomal storage disease with two distinct phenotypes, an infantile-onset form (formerly Wolman disease) and a later-onset form (formerly cholesteryl ester storage disease). The objective of this narrative review is to examine the most important aspects of the diagnosis and treatment of LAL-D and to provide practical expert recommendations. The infantile-onset form occurs in the first weeks of life and is characterized by malnourishment and failure to thrive due to gastrointestinal impairment (vomiting, diarrhea, malabsorption), as well as systemic inflammation, hepatosplenomegaly, and adrenal calcifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!