The replicative machinery encounters many impediments, some of which can be overcome by lesion bypass or replication restart pathways, leaving repair for a later time. However, interstrand crosslinks (ICLs), which preclude DNA unwinding, are considered absolute blocks to replication. Current models suggest that fork collisions, either from one or both sides of an ICL, initiate repair processes required for resumption of replication. To test these proposals, we developed a single-molecule technique for visualizing encounters of replication forks with ICLs as they occur in living cells. Surprisingly, the most frequent patterns were consistent with replication traverse of an ICL, without lesion repair. The traverse frequency was strongly reduced by inactivation of the translocase and DNA binding activities of the FANCM/MHF complex. The results indicate that translocase-based mechanisms enable DNA synthesis to continue past ICLs and that these lesions are not always absolute blocks to replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3880019PMC
http://dx.doi.org/10.1016/j.molcel.2013.09.021DOI Listing

Publication Analysis

Top Keywords

replication traverse
8
interstrand crosslinks
8
absolute blocks
8
blocks replication
8
replication
7
dna
5
dna translocase
4
translocase fancm/mhf
4
fancm/mhf promotes
4
promotes replication
4

Similar Publications

SMC translocation is unaffected by an excess of nucleoid associated proteins in vivo.

Sci Rep

January 2025

Department of Biology, Indiana University, 1001 E 3rd Street, Bloomington, IN 47405, USA.

Genome organization is important for DNA replication, gene expression, and chromosome segregation. In bacteria, two large families of proteins, nucleoid-associated proteins (NAPs) and SMC complexes, play important roles in organizing the genome. NAPs are highly abundant DNA-binding proteins that can bend, wrap, bridge, and compact DNA, while SMC complexes load onto the chromosome, translocate on the DNA, and extrude DNA loops.

View Article and Find Full Text PDF

Are We Moving Too Fast?: Representation of Speed in Static Images.

J Cogn

January 2025

Department of Communication and Cognition, Tilburg School of Humanities and Digital Sciences, Tilburg University, The Netherlands.

Despite pictures being static representations, they use various cues to suggest dynamic motion. To investigate the effectiveness of different motion cues in conveying speed in static images, we conducted 3 experiments. In Experiment 1, we compared subjective speed ratings given for motion lines trailing behind movers, suppletion lines replacing parts of the movers and backfixing lines set in the background against the baseline of having no extra cue.

View Article and Find Full Text PDF

Learning dynamic cognitive map with autonomous navigation.

Front Comput Neurosci

December 2024

Department of Engineering and Architecture, Ghent University/IMEC, Ghent, Belgium.

Inspired by animal navigation strategies, we introduce a novel computational model to navigate and map a space rooted in biologically inspired principles. Animals exhibit extraordinary navigation prowess, harnessing memory, imagination, and strategic decision-making to traverse complex and aliased environments adeptly. Our model aims to replicate these capabilities by incorporating a dynamically expanding cognitive map over predicted poses within an active inference framework, enhancing our agent's generative model plasticity to novelty and environmental changes.

View Article and Find Full Text PDF

Background: Chronic biliary disease, including cholangitis and cholecystitis, is attributed to ascending infection by intestinal bacteria. Development of a mouse model for bile duct inflammation is imperative for the advancement of novel therapeutic approaches. Current models fail to replicate the harmful bacterial influx to the biliary tract observed in humans and spread of inflammation to the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!