Implementation of a sliding-mode-based position sensorless drive for high-speed micro permanent-magnet synchronous motors.

ISA Trans

Department of Electrical Engineering, National Cheng Kung University, No.1, University Road, Tainan City 70101, Taiwan, ROC. Electronic address:

Published: March 2014

Due to issues such as limited space, it is difficult if it is not impossible to employ a position sensor in the drive control of high-speed micro PMSMs. In order to alleviate this problem, this paper analyzes and implements a simple and robust position sensorless field-oriented control method of high-speed micro PMSMs based on the sliding-mode observer. In particular, the angular position and velocity of the rotor of the high-speed micro PMSM are estimated using the sliding-mode observer. This observer is able to accurately estimate rotor position in the low speed region and guarantee fast convergence of the observer in the high speed region. The proposed position sensorless control method is suitable for electric dental handpiece motor drives where a wide speed range operation is essential. The proposed sensorless FOC method is implemented using a cost-effective 16-bit microcontroller and tested in a prototype electric dental handpiece motor. Several experiments are performed to verify the effectiveness of the proposed method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.isatra.2013.09.017DOI Listing

Publication Analysis

Top Keywords

high-speed micro
16
position sensorless
12
micro pmsms
8
control method
8
sliding-mode observer
8
speed region
8
electric dental
8
dental handpiece
8
handpiece motor
8
position
6

Similar Publications

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

Neuromorphic engineering has emerged as a promising avenue for developing brain-inspired computational systems. However, conventional electronic AI-based processors often encounter challenges related to processing speed and thermal dissipation. As an alternative, optical implementations of such processors have been proposed, capitalizing on the intrinsic information-processing capabilities of light.

View Article and Find Full Text PDF

Assessment of Surface Integrity in Precision Electrical Discharge Machining of HSS EN HS6-5-2C.

Micromachines (Basel)

December 2024

Department of Process Engineering, Faculty of Manufacturing Technologies with the Seat in Presov, Technical University of Kosice, Sturova 31, 080 01 Presov, Slovakia.

The integrity of the machined surface in precision wire electrical discharge machining (WEDM) of electrically conductive materials is one of the most important quality indicators. The integrity parameters of the machined surface are primarily monitored in terms of micro and macro geometry parameters. This paper presents the results obtained as a part of experimental research aimed at evaluating surface crack density (SCD) when machining EN HS6-5-2C using WEDM technology.

View Article and Find Full Text PDF

Scalable InGaN nanowire µ-LEDs: paving the way for next-generation display technology.

Natl Sci Rev

January 2025

Division of Advanced Materials Engineering, College of Engineering, Research Center for Advanced Materials Development (RCAMD), Jeonbuk National University (JBNU), Jeonju 54896, South Korea.

Ever-increasing demand for efficient optoelectronic devices with a small-footprinted on-chip light emitting diode has driven their expansion in self-emissive displays, from micro-electronic displays to large video walls. InGaN nanowires, with features like high electron mobility, tunable emission wavelengths, durability under high current densities, compact size, self-emission, long lifespan, low-power consumption, fast response, and impressive brightness, are emerging as the choice of micro-light emitting diodes (µLEDs). However, challenges persist in achieving high crystal quality and lattice-matching heterostructures due to composition tuning and bandgap issues on substrates with differing crystal structures and high lattice mismatches.

View Article and Find Full Text PDF

Current trends in artificial intelligence toward larger models demand a rethinking of both hardware and algorithms. Photonics-based systems offer high-speed, energy-efficient computing units, provided algorithms are designed to exploit photonics' unique strengths. The recent implementation of cellular automata in photonics demonstrates how a few local interactions can achieve high throughput and precision.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!