Transition between saturation regimes of gyrokinetic turbulence.

Phys Rev Lett

Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712, USA and Max Planck Institute for Plasma Physics, EURATOM Association, 85748 Garching, Germany.

Published: October 2013

A gyrokinetic model of ion temperature gradient driven turbulence in magnetized plasmas is used to study the injection, nonlinear redistribution, and collisional dissipation of free energy in the saturated turbulent state over a broad range of driving gradients and collision frequencies. The dimensionless parameter L(T)/L(C), where L(T) is the ion temperature gradient scale length and L(C) is the collisional mean free path, is shown to parametrize a transition between a saturation regime dominated by nonlinear transfer of free energy to small perpendicular (to the magnetic field) scales and a regime dominated by dissipation at large scales in all phase space dimensions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.111.175001DOI Listing

Publication Analysis

Top Keywords

transition saturation
8
ion temperature
8
temperature gradient
8
free energy
8
regime dominated
8
saturation regimes
4
regimes gyrokinetic
4
gyrokinetic turbulence
4
turbulence gyrokinetic
4
gyrokinetic model
4

Similar Publications

Background: White matter lesions (WMLs) are common with aging and are prevalent in AD, but the underlying physiology as well as associations with conventional vascular risk factors are not yet fully understood. In this study, we investigated the relationship between vascular risk factors and microvascular physiology (i.e.

View Article and Find Full Text PDF

Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.

View Article and Find Full Text PDF

The sensorless vector control method of synchronous reluctance motors (SynRMs), based on extended back electromotive force (EMF) or flux observation, has been widely applied in the medium- or high-speed range. However, in the low-speed and low-current range, the extended back-EMF and flux are nearly zero. The use of the current frequency () control method can enable the motor to pass through the low-speed region, thereby ensuring that the back-EMF and flux reach a large value.

View Article and Find Full Text PDF

The amount of incorporation of linear alcohols and ethers in HSiWO·6HO (HSiW·6HO, 50 wt %) supported on silica (SiO) was estimated by a conventional volumetric method and infrared (IR) spectroscopy, and the state of involved molecules was elucidated. First, the attribution of the key IR band at 2200 cm, which was observed for the water of crystallization of HSiW·6HO, to HO species (protons) was verified by coincident observation of thermogravimetric-differential thermal analysis, X-ray diffraction (XRD), and IR spectroscopy during thermal treatment in addition to the isotope exchange with DO. The 2200 cm band was gradually decreased in intensity by increasing the amount of adsorption of pyridine and was totally consumed at saturation, while the volumetric method provided the accurate number of included pyridine molecules.

View Article and Find Full Text PDF

Electride transition in liquid aluminum under high pressure and high temperature.

J Chem Phys

January 2025

Key Laboratory of Efficient Low-carbon Energy Conversion and Utilization of Jiangsu Provincial Higher Education Institutions, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China.

Despite the conventional view of liquid aluminum (l-Al) as a simple metal governed by the free-electron model, it exhibits unique bonding characteristics. This study uncovers a gradual transition from free electron to electride behavior in l-Al at high pressure and temperature, forming a type of two-component liquid where atomic and electride states coexist. The proportion of electride increases with pressure and temperature until reaching saturation, leading to notable changes in the pair-correlation function and coordination number of l-Al at saturation pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!