The human cannabinoid receptor, CB1, a G protein-coupled receptor (GPCR), contains a relatively long (∼110 a.a.) amino terminus, whose function is still not defined. Here we explore a potential role for the CB1 N-terminus in modulating ligand binding to the receptor. Although most of the CB1 N-terminus is not necessary for ligand binding, previous studies have found that mutations introduced into its conserved membrane proximal region (MPR) do impair the receptors ability to bind ligand. Moreover, within the highly conserved MPR (∼ residues 90-110) lie two cysteine residues that are invariant in all CB1 receptors. We find these two cysteines (C98 and C107) form a disulfide in heterologously expressed human CB1, and this C98-C107 disulfide is much more accessible to reducing agents than the previously known disulfide in extracellular loop 2 (EL2). Interestingly, the presence of the C98-C107 disulfide modulates ligand binding to the receptor in a way that can be quantitatively analyzed by an allosteric model. The C98-C107 disulfide also alters the effects of allosteric ligands for CB1, Org 27569 and PSNCBAM-1. Together, these results provide new insights into how the N-terminal MPR and EL2 act together to influence the high-affinity orthosteric ligand binding site in CB1 and suggest that the CB1 N-terminal MPR may be an area through which allosteric modulators can act.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938390 | PMC |
http://dx.doi.org/10.1021/bi400842k | DOI Listing |
PLoS One
January 2025
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
J Chem Inf Model
January 2025
Schrödinger Incorporated, Cambridge, Massachusetts 02142, United States.
J Drug Target
January 2025
College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
Arsenic trioxide (ATO), the active ingredient in Chinese arsenic, effectively inhibits hepatocellular carcinoma (HCC) cell growth, but its clinical application is limited by the lack of a targeted delivery system. Phosphatidylinositol proteoglycan 3 (GPC3) is specifically expressed in HCC, and CPP44 is a cell-penetrating peptide that targets HCC cells. Here, we developed a liposome incorporating ATO with dual surface modifications of anti-GPC3 antibody and CPP44.
View Article and Find Full Text PDFFuture Med Chem
January 2025
Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
Background: Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors.
Methods: Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity.
ACS Chem Biol
January 2025
Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.
Conventional small-molecule drugs primarily operate by inhibiting protein function, but this approach is limited when proteins lack well-defined ligand-binding pockets. Targeted protein degradation (TPD) offers an alternative approach by harnessing cellular degradation pathways to eliminate specific proteins. Recent studies have expanded the potential of TPD by identifying additional E3 ligases, with DCAF16 emerging as a promising candidate for facilitating protein degradation through both proteolysis-targeting chimera (PROTAC) and molecular glue mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!