Dispersion of nanodiamond on chemical mechanical polishing performance for Ge1Sb6Te3 film.

J Nanosci Nanotechnol

Department of Nano-Semiconductor Engineering, Korea University, Anam-dong 5-1, Seoungbuk-ku, Seoul 136-713, Korea.

Published: September 2013

AI Article Synopsis

  • The study investigates how different concentrations of surfactant affect the chemical mechanical polishing (CMP) of Ge1Sb6Te3 films using nanodiamond-based slurry.
  • The researchers analyzed the dispersion of nanodiamond particles and their size, finding that the average particle size decreased with increasing surfactant concentration up to a certain point (0.9 wt%).
  • Results indicated that higher surfactant concentration led to lower surface roughness and material removal rates during the polishing process, as excess surfactant created a passivation layer on the film's surface.

Article Abstract

This study describes the effect of surfactant concentration on the chemical mechanical polishing process of Ge1Sb6Te3 film using nanodiamond-based slurry. Aggregated diamond nanoparticles were dispersed in a slurry solution containing anionic poly(sodium 4-styrene sulfonate) using milling system. The zeta-potential, particle size and transmission electron microscopy image of the dispersed nanodiamond particles were analyzed for slurries having varying surfactant concentrations to identify the effect of the surfactant concentration on the milling process. The cationic nanodiamond particles were covered with the anionic poly(sodium 4-styrene sulfonate) polymer, and the polymer acted as a dispersion agent on account of the electrostatic repulsion. By increasing the surfactant concentration in the milling process, the average particle size of the nanodiamond particle decreased until the concentration reached 0.9 wt%. In addition, the surface roughness and material removal rate of the Ge1Sb6Te3 film in the polishing process strongly-depended on the surfactant concentration. Both surface roughness and material removal rate decreased with an increase in the surfactant concentration. Excess poly(sodium 4-styrene sulfonate) acted as a passivation layer, resulting in a decrease in the surface roughness and material removal rate of the Ge1Sb6Te3 film.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2013.7715DOI Listing

Publication Analysis

Top Keywords

surfactant concentration
20
ge1sb6te3 film
16
polysodium 4-styrene
12
4-styrene sulfonate
12
surface roughness
12
roughness material
12
material removal
12
removal rate
12
chemical mechanical
8
mechanical polishing
8

Similar Publications

Gold nanoparticles (AuNPs) and their biocompatible conjugates find wide use as transducers in (bio)sensors and as Nano-pharmaceutics. The study of the interaction between AuNPs and proteins in representative application media helps to better understand their intrinsic behaviors. A multi-environment, multi-parameter screening strategy is proposed based on asymmetric flow field flow fractionation (AF4)-multidetector.

View Article and Find Full Text PDF

Rhodococcus equi (R. equi) is a primary cause of pyogranulomatous pneumonia of foals between three weeks and five months of age. Early diagnosis of rhodococcal pneumonia has always been considered a preferable approach as it can lead to more successful treatment and better outcomes.

View Article and Find Full Text PDF

Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.

Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.

View Article and Find Full Text PDF

Detecting ion-specific forces between fatty acid colloids and salt crystals in brines using colloidal probe AFM.

J Colloid Interface Sci

December 2024

School of Chemical Engineering and ARC Centre of Excellence for Enabling Eco-Efficient Beneficiation of Minerals (UQ Node), The University of Queensland, Brisbane, Queensland 4072, Australia. Electronic address:

Hypothesis: Ion-specific forces in concentrated salt solutions play critical roles in many applications, ranging from biology to engineering, e.g., separating water-soluble minerals in brines by flotation using air bubbles.

View Article and Find Full Text PDF

Innovative approaches to cationic and anionic (catanionic) amphiphiles self-assemblies: Synthesis, properties, and industrial applications.

Adv Colloid Interface Sci

December 2024

Department of Chemistry and Centre for Advance Study in Chemistry, Panjab University, Chandigarh, India. Electronic address:

Meeting the contemporary demand for the development of functional, biocompatible, and environment friendly self-assembled structures using efficient, cost-effective, and energy-saving methods, the field of colloids has witnessed a surge in interest. Research into cationic and anionic (catanionic) surfactant combinations has gained momentum due to their distinct advantages and synergistic properties in this context. Catanionic self-assemblies have emerged as promising contenders for addressing these requirements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!