The evolutionary conserved Mre11/Rad50/Nbs1 complex functions as one of the guardians of genome integrity in eukaryotes; it is required for the double-strand break repair, meiosis, DNA checkpoint, and telomere maintenance. To better understand the role of the MRE11 gene in Arabidopsis, we performed comparative analysis of several mre11 alleles with respect to genome stability and meiosis. The mre11-4 and mre11-2 alleles presumably produce truncated MRE11 proteins composed of the first 499 and 529 amino acids, respectively. Although the putative MRE11 truncated proteins differ only by 30 amino acids, the mutants exhibited strikingly different phenotypes in regards to growth morphology, genome stability and meiosis. While the mre11-2 mutants are fully fertile and undergo normal meiosis, the mre11-4 plants are sterile due to aberrant repair of meiotic DNA breaks. Structural homology analysis suggests that the T-DNA insertion in the mre11-4 allele probably disrupted the putative RAD50 interaction and/or homodimerization domain, which is assumed to be preserved in mre11-2 allele. Intriguingly, introgression of the atm-2 mutant plant into the mre11-2 background renders the double mutant infertile, a phenotype not observed in either parent line. This data indicate that MRE11 partially compensates for ATM deficiency in meiosis of Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804616 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078760 | PLOS |
Metab Brain Dis
December 2024
Department of Neurology, Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, 130022, China.
Some studies have shown an association between dyslipidemia and diabetic neuropathy (DN), but the genetic association has not been clarified. Therefore, the present study aimed to investigate the genetic causal association between dyslipidemia and DN through a Mendelian randomization (MR) approach. Genetic causal associations between total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL) and DN were investigated by MR to provide a basis for the prevention and treatment of DN.
View Article and Find Full Text PDFCurr Oncol
December 2024
Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
STIL is a regulatory protein essential for centriole biogenesis, and its dysregulation has been implicated in various diseases, including malignancies. However, its role in non-small-cell lung carcinoma (NSCLC) remains unclear. In this study, we examined STIL expression and its potential association with chromosomal numerical abnormalities (CNAs) in NSCLC using The Cancer Genome Atlas (TCGA) dataset, immunohistochemical analysis, and in vitro experiments with NSCLC cell lines designed to overexpress STIL.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
The Kids Research Institute Australia, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, Western Australia 6009, Australia.
Expression of the compact mitochondrial genome is regulated by nuclear encoded, mitochondrially localized RNA-binding proteins (RBPs). RBPs regulate the lifecycles of mitochondrial RNAs from transcription to degradation by mediating RNA processing, maturation, stability and translation. The Fas-activated serine/threonine kinase (FASTK) family of RBPs has been shown to regulate and fine-tune discrete aspects of mitochondrial gene expression.
View Article and Find Full Text PDFRedox Biochem Chem
December 2024
Food Chemistry with Focus on Toxicology, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany.
While copper (Cu) is an essential trace element for biological systems due to its redox properties, excess levels may lead to adverse effects partly due to overproduction of reactive species. Thus, a tightly regulated Cu homeostasis is crucial for health. Cu dyshomeostasis and elevated labile Cu levels are associated with oxidative stress and neurodegenerative disorders, but the underlying mechanisms have yet to be fully characterized.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Türkiye.
Aging is influenced by cellular senescence mechanisms that are associated with oxidative stress. Oxidative stress is the imbalance between antioxidants and free radicals. This imbalance affects enzyme activities and causes mitochondrial dysfunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!