The proton-coupled folate transporter (PCFT) was recently identified as the major uptake route for dietary folates in humans. The three-dimensional structure of PCFT and its detailed interplay with function remain to be determined. We screened the water-accessible extracellular surface of HsPCFT using the substituted-cysteine accessibility method, to investigate the boundaries between the water-accessible surface and inaccessible buried protein segments. Single-cysteines, engineered individually at 40 positions in a functional cysteine-less HsPCFT background construct, were probed for plasma-membrane expression in Xenopus oocytes with a bilayer-impermeant primary-amine-reactive biotinylating agent (sulfosuccinimidyl 6-(biotinamido) hexanoate), and additionally for water-accessibility of the respective engineered cysteine with the sulfhydryl-selective biotinylating agent 2-((biotinoyl)amino)ethyl methanethiosulfonate. The ratio between Cys-selective over amine-selective labeling was further used to evaluate three-dimensional models of HsPCFT generated by homology / threading modeling. The closest homologues of HsPCFT with a known experimentally-determined three-dimensional structure are all members of one of the largest membrane protein super-families, the major facilitator superfamily (MFS). The low sequence identity--14% or less--between HsPCFT and these templates necessitates experiment-based evaluation and model refinement of homology/threading models. With the present set of single-cysteine accessibilities, the models based on GlpT and PepTSt are most promising for further refinement.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799626 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078301 | PLOS |
J Biol Chem
September 2024
Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA; Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA; PhD. Programs in Biochemistry, Chemistry and Biology, The Graduate Center, CUNY, New York, New York, USA. Electronic address:
Transcription factors are challenging to target with small-molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include naturally ligand-regulated transcription factors, including our prior work with the hypoxia-inducible factor (HIF)-2 transcription factor, showing that small-molecule binding within an internal pocket of the HIF-2α Per-Aryl hydrocarbon Receptor Nuclear Translocator (ARNT)-Sim (PAS)-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to modulate several ARNT-mediated signaling pathways.
View Article and Find Full Text PDFMaterials (Basel)
June 2024
University Gustave Eiffel, Cerema, UMR MCD, F-77454 Marne-la-Vallée, France.
This study aims to investigate the influence of exposure conditions on the behavior of mortar subjected to an external sulfate attack (ESA). Three different exposure conditions (full immersion, semi-immersion, and drying/wetting cycles) were tested on mortar prisms made with Portland cement and two w/c ratios (0.45 and 0.
View Article and Find Full Text PDFPolymers (Basel)
January 2024
USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53726, USA.
Soy is considered one of the most promising natural materials for manufacturing wood adhesives due to its low cost, high protein content, and ready availability. However, more cost-effective ways of improving its wet shear strength are needed to achieve wider market acceptance. Protein adhesive wet strength depends on the use of (typically expensive) crosslinking additives as well as the processing/denaturation of the protein.
View Article and Find Full Text PDFTranscription factors are generally challenging to target with small molecule inhibitors due to their structural plasticity and lack of catalytic sites. Notable exceptions include several naturally ligand-regulated transcription factors, including our prior work with the heterodimeric HIF-2 transcription factor which showed that small molecule binding within an internal pocket of the HIF-2α PAS-B domain can disrupt its interactions with its dimerization partner, ARNT. Here, we explore the feasibility of similarly targeting small molecules to the analogous ARNT PAS-B domain itself, potentially opening a promising route to simultaneously modulate several ARNT-mediated signaling pathways.
View Article and Find Full Text PDFNat Geosci
February 2023
Department of Earth System Science, Stanford University, Stanford, CA USA.
The rooting-zone water-storage capacity-the amount of water accessible to plants-controls the sensitivity of land-atmosphere exchange of water and carbon during dry periods. How the rooting-zone water-storage capacity varies spatially is largely unknown and not directly observable. Here we estimate rooting-zone water-storage capacity globally from the relationship between remotely sensed vegetation activity, measured by combining evapotranspiration, sun-induced fluorescence and radiation estimates, and the cumulative water deficit calculated from daily time series of precipitation and evapotranspiration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!