Objectives: Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration.
Materials And Methods: We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line) that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation), alkaline phosphatase activity (a marker for early differentiation), osteocalcin (a marker for late differentiation), calcium deposition (a marker for final mineralization) and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin) at different time points.
Results: All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28(th) day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7).
Conclusions: Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813516 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078198 | PLOS |
Bioorg Med Chem
January 2025
State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address:
Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins.
View Article and Find Full Text PDFTher Adv Hematol
January 2025
Department of Paediatrics, First Affiliated Hospital, Sun Yat-sen University, Zhongshan Er Road, No. 58, Guangzhou, Guangdong 510080, China.
Background: Treatment outcomes for acute promyelocytic leukemia (APL) have improved with all-trans-retinoic acid and arsenic trioxide, yet relapse remains a concern, especially in pediatric patients. The prognostic value of minimal residual disease (MRD) post-induction and the impact of arsenic levels during induction on MRD are not fully understood.
Objectives: To evaluate the relationship between post-induction MRD levels and relapse-free survival (RFS) in pediatric APL patients, and to investigate the correlation between blood arsenic concentration levels during induction therapy and MRD status.
Biomolecules
December 2024
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Acute promyelocytic leukemia (APL) accounts for approximately 10-15% of newly diagnosed acute myeloid leukemia cases and presents with coagulopathy and bleeding. Prompt diagnosis and treatment are required to minimize early mortality in APL as initiation of all-trans retinoic acid therapy rapidly reverses coagulopathy. The fusion is a hallmark of APL and its rapid identification is essential for rapid initiation of specific treatment to prevent early deaths from coagulopathy and bleeding and optimize patient outcomes.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Clinic of Hematology, University Clinical Center of Serbia, 11000 Belgrade, Serbia.
Background: Acute promyelocytic leukemia (APL) is frequently associated with disseminated intravascular coagulation (DIC), leading to potentially life-threatening bleeding. Compared to bleeding, thromboses are a less commonly encountered problem.
Objective: The objective of our study was to identify the incidence and predictive value of demographic data, clinical-laboratory parameters, and thrombosis risk assessment models (RAMs) for venous thromboembolism (VTE) in patients with APL.
Cancers (Basel)
December 2024
Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy.
Acute promyelocytic leukemia (APL) is a rare type of AML, characterized by the t(15;17) translocation and accounting for 8-15% of cases. The introduction of target therapies, such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), radically changed the management of APL, making it the most curable AML subtype. However, a small percentage (estimated to be 2%) of AML presenting with APL-like morphology and/or immunophenotype lacks t(15;17).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!