One form of liver steatosis, namely Non-Alcoholic Fatty Liver Disease (NAFLD), is a worrisome health problem worldwide characterized by intrahepatic triacylglycerol (TG) overaccumulation. NAFLD is a common feature of metabolic syndrome being often associated with obesity, dyslipidemia and diabetes and mostly closely linked to insulin resistance. The mechanism of NAFLD pathogenesis is object of intense investigation especially regarding complex systems ultimately resulting in excessive TG deposition in hepatocytes. However, scarce is the attention about the relevance of hepatic import of glycerol, the other primary source (as glycerol-3-phosphate) of increased TG in hepatocytes. Obese leptin-deficient (ob/ob) mice, an animal model of NAFLD, were used to evaluate the functional involvement of Aquaporin-9 (AQP9), the major pathway of liver glycerol entry, in hepatosteatosis. By RT-PCR and qPCR, the level of Aqp9 mRNA in the liver of starved obese mice was comparable with the corresponding control lean littermates. By immunoblotting, the AQP9 protein at the hepatocyte sinusoidal plasma membrane of obese mice was markedly lower (33%) than lean mice, a finding fully confirmed by immunohistochemistry. By stopped-flow light scattering, the liver glycerol permeability of ob/ob mice was significantly lower (53%) than lean mice, a finding consistent with both the observed down-regulation of AQP9 protein and increased level of plasma glycerol characterizing obese mice. In summary, our results suggest implication of AQP9 in liver steatosis. The reduction of hepatocyte AQP9 and, consequently, glycerol permeability might be a defensive mechanism to counteract further fat infiltration in liver parenchyma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813550PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078139PLOS

Publication Analysis

Top Keywords

liver glycerol
12
glycerol permeability
12
obese mice
12
liver
9
non-alcoholic fatty
8
fatty liver
8
liver disease
8
liver steatosis
8
ob/ob mice
8
aqp9 protein
8

Similar Publications

Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.

View Article and Find Full Text PDF

The role of adipose and muscle tissue breakdown on interorgan energy substrate fluxes in a Pseudomonas aeruginosa induced sepsis model in female pigs.

Physiol Rep

January 2025

Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas, USA.

Sepsis leads to an acute breakdown of muscle to support increased caloric and amino acid requirements. Little is known about the role of adipose and muscle tissue breakdown and intestinal metabolism in glucose substrate supply during the acute phase of sepsis. In a translational porcine model of sepsis, we explored the across organ net fluxes of gluconeogenic substrates.

View Article and Find Full Text PDF

Deficiency of the mitochondrial transporter SLC25A47 minimally impacts hepatic lipid metabolism in fasted and diet-induced obese mice.

Mol Metab

December 2024

Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands; Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA. Electronic address:

The peroxisome proliferator-activated receptor-alpha (PPARα) plays a central role in lipid metabolism in the liver by stimulating the expression of hundreds of genes. Accordingly, regulation by PPARα could be a screening tool to identify novel genes involved in hepatic lipid metabolism. Previously, the mitochondrial transporter SLC25A47 was suggested to play a role in energy metabolism and liver-specific uncoupling, but further research is lacking.

View Article and Find Full Text PDF

Background: NXT629, a PPAR-alpha antagonist, exerts widespread effects in many diseases; however, its function and relevant mechanism in cholesterol gallstones (CG) remain largely unknown.

Methods: Male C57BL/6 J mice were fed a regular diet or lithogenic diet (LD), followed by treatment with intraperitoneal injection of NXT629. H&E staining was performed to analyze hepatic pathological changes, and Oil red O staining was conducted to detect lipid accumulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!