Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the (13)C, (15)N, (2)H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3812221PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0078116PLOS

Publication Analysis

Top Keywords

high-resolution nmr
12
secondary structure
12
amino acid
12
acid transporter
8
transporter outer
8
protein
7
high-resolution
5
nmr reveals
4
reveals secondary
4
structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!